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ABSTRACT

Multiple air-to-ground (AG) radio propagation channels are experimentally 

characterized for two frequency bands, C-band and L-band. These characterizations are 

aimed to support the specification of the control and non-payload communication 

(CNPC) links being designed for civil unmanned aircraft systems (UAS). The use of 

UAS is expected to grow dramatically in the coming decades. In the United States, UAS 

will be monitored and guided in their operation within the national airspace system 

(NAS) via the CNPC link. The specifications of the CNPC link are being designed by 

government, industries, academia and standards bodies such as the Radio Technical 

Commission for Aeronautics (RTCA). Two bands have been allocated for the CNPC 

applications: from 5030 to 5091 MHz in C-band and a portion of the aeronautical L-band 

from 960 to 1215 MHz. The project under which this work was conducted is entitled 

“Unmanned Aircraft Systems Research: The AG Channel, Robust Waveforms, and 

Aeronautical Network Simulations”, and this is a sub-project of a NASA project entitled 

“Unmanned Aircraft Systems Integration in the National Airspace System.” 

Measurements and modeling for radio propagation channels play an essential role 

in wireless communication system design and performance evaluation; such models 

estimate attenuation, delay dispersion, and antenna diversity in wireless channels. The 

AG channel differs significantly from classic cellular, ground-to-satellite, and other 

terrestrial wireless channels, particularly in terms of antenna heights and velocity. The 
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previous studies about the AG channels are reviewed and the significant gaps are 

indicated. 

NASA Glenn Research Center has conducted an AG channel measurement 

campaign for multiple ground station local environments, including over sea, over 

freshwater, desert, suburban, near urban, hilly and mountainous settings. In this 

campaign, over 316 million power delay profiles (PDPs) or channel impulse responses 

(CIRs), over 82 flight tracks, have been collected. The measurement equipment was a 

dual-band single-input multiple-output (SIMO) wideband channel sounding system with 

bandwidth of 50 MHz in C-band and 5 MHz in L-band. 

Given the dynamic nature of the AG environments, the channels are statistically 

non-stationary, meaning that the channel’s statistical parameters change over time/space. 

We have estimated, via two distinct methods, that the stationarity distance is 

approximately 15 m—this is the distance over which the channel characteristics can be 

assumed to be wide sense stationary. The AG channel attenuation is considered as a 

combination of large scale path loss, small scale fading, and airframe shadowing. The 

large scale path loss is modeled by both the log-distance model and two-ray models. The 

theoretical flat earth and curved earth two-ray models are presented, along with their 

limitations, boundaries and some enhancements. Numerous propagation effects in the AG 

channels are discussed, and this includes earth spherical divergence, atmospheric 

refraction, atmospheric gas and hydrometeor attenuations, and ducting. The small scale 

fading is described by the Ricean distribution, which for unit-energy normalizations are 

completely characterized by Ricean K-factors; these K-factors are approximately 28.7 dB 

in C-band and 13.1 dB in L-band. The line-of-sight (LOS) signal can be obstructed by the 
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airplane itself in some specific maneuvers, and this is termed airframe shadowing. For the 

specific flights and NASA aircraft used in our measurements, the shadowing duration 

was found to be on average 30 seconds, and the shadowing loss can be as large as 40 dB. 

The statistics, models and simulation algorithm for the airframe shadowing are provided. 

The wideband characteristics of the AG channel are quantified using root-mean-

square delay spread (RMS-DS), and illustrated by sequences of PDPs. Tapped delay line 

(TDL) models are also provided. Doppler effects for over water channels are also 

addressed. Given the sparsity of the diffuse multipath components (MPCs) in the AG 

channels and generally short lifetime of these MPCs, the CIRs are modeled by the two-

ray model plus intermittent 3
rd

, 4
th

 or 5
th

 “rays.” Models for intermittent ray probability of 

occurrence, duration, relative power, phase, and excess delay are provided. 

The channels at C-band and L-band were found to be essentially uncorrelated; this 

conclusion holds for the specific antenna locations used in our experiments (the aircraft 

underside), but is not expected to change for arbitrary antenna locations. For the aircraft 

antenna locations employed, intra-band signals are highly correlated, and this is as 

expected for channels with a dominant LOS component; analytical correlation 

computations show interesting two-ray effects that also appear in measurements. Multiple 

aircraft antennas and carefully selected locations are recommended for mitigating 

airframe shadowing for the CNPC link. 

Future work for AG channel modeling includes characterization of L-band delay 

dispersion and L-band TDL models, estimation of building and/or tree shadowing for 

small UAS that fly at very low altitudes, evaluation of multiple ground site(s) antenna 

diversity, and AG channel modeling via geometric techniques, e.g., ray-tracing.  
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CHAPTER 1 

INTRODUCTION

1.1 BACKGROUND: INTEGRATION OF UAS INTO THE NAS 

The use of unmanned aircraft systems (UAS) is expected to grow dramatically in 

the coming decades [1]. These UAS are also termed uninhabited or unmanned aerial 

vehicles (UAVs), and in the popular press by the rather inaccurate term “drones.” 

Civilian applications for UAS include law enforcement, communications after disasters, 

industrial monitoring surveys (e.g., electricity networks in remote areas), agricultural 

services, public safety and police communications, weather monitoring, earth science 

remote sensing, film-making, and package delivery. Numerous additional applications, 

like the rapidly growing applications for smartphones that use iPhone operating systems 

(iOS) or Android,” will surely arise in the near future when UAS are (likely) permitted 

for public use. At the present time, UAS are only authorized for use by military and 

specially licensed operators in the United States. The licensed operators have to report 

detailed specifications of flying locations and be pre-approved. 

Several organizations, including the Federal Aviation Administration (FAA), the 

Department of Defense (DOD), the National Aeronautics and Space Administration 

(NASA), and many standards bodies, such as the Radio Technical Commission for 

Aeronautics (RTCA) [2], the International Civil Aviation Organization (ICAO) [3], and 

the International Telecommunications Union (ITU) [4], are presently working on 

integrating UAS into the airspace worldwide. In the USA, this is termed the National 
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Airspace System (NAS). All UAS must follow the standards that are being established in 

order to fly safely in the NAS. UAS will have to be able to communicate with ground 

stations in the first phase of their deployment into the NAS; later phases of operation in 

the NAS will allow the UAS to exchange data with satellites, and may also allow for air-

to-air relay. Only communication required for UAS control is addressed by the 

standards
1
, and this part of communications is termed “control and non-payload 

communications” (CNPC). Two civilian bands were recently allocated for CNPC: the L-

band (960-1215 MHz)
2
 and C-band (5030-5091 MHz) [5]. The RTCA special committee 

(SC) 228 is responsible for developing CNPC specifications for UAS in the United 

States. RTCA recommendations will also likely guide action for the ICAO, which in turn 

provides inputs to the ITU. 

We are collaborating with NASA Glenn Research Center (GRC) on a project (the 

University of South Carolina, USC, project) entitled “Unmanned Aircraft Systems (UAS) 

Research: The AG Channel, Robust Waveforms, and Aeronautical Network 

Simulations.” The project is part of a large NASA project entitled “Unmanned Aircraft 

Systems (UAS) Integration in the National Airspace System (NAS)”, which includes 

detailed investigations of communication system elements (air-to-ground radio channel 

characteristics, prototype radio evaluation, and full-scale nationwide simulation of UAS 

networking), as well as system-level topics such as “sense and avoid” interoperability, 

and human systems integration. Our USC project covers several communication system 

                                                           
1
 This is true for air-ground links, at least initially; it may not be true for satellite links, and will likely not 

be true for air-air links. 
2
 L-band 960-1215 MHz is used for multiple aeronautical and radio navigation applications. RTCA plan to 

use the cleanest portion 960-977 MHz for CNPC link. 
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areas, and in this dissertation we focus on quantification of air-to-ground (AG) channel 

characteristics. 

1.2 INTRODUCTION TO WIRELESS CHANNEL MODELING 

One of the most serious hindrances to reliable communication is the wireless 

channel. The narrowband channel model that encompasses path loss, small scale fading 

and shadowing loss is vital for accurate link budgets and specifying transmitter power 

requirements. Path loss typically increases with frequency and distance between 

transmitter (Tx) and receiver (Rx). The line-of-sight (LOS) can be blocked by terrain, 

buildings, trees, vehicles, etc. Such blockage is often called shadowing. Other than path 

loss and shadowing loss, the channel is also degraded by small scale fading caused by 

multipath propagation. An illustration of narrowband channel effects vs. distance is 

shown in Figure 1.1. The green line indicates an example value of path loss or attenuation 

above which the radio link is not available (outage). If only average path loss (blue 

dashed straight line) is considered, the link distance can be up to 45 km. Small scale 

fading (red curve) makes the path loss vary considerably, and depending upon outage 

definition, with small scale fading added to path loss, maximum link distance is reduced 

to less than 20 km. Shadowing may occur at any distance which may also cause an 

outage for a short duration. Quantitative characteristics of all these effects are essential 

for radio communication system design. 
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Figure 1.1. Illustration of narrowband channel attenuation vs. distance. 

The radio propagation channel generally consists of multipath components 

(MPCs), and these MPCs can be spread both in delay and spatial angle. The spread in 

delay can result in frequency selectivity, and for digital communication systems, inter-

symbol interference (ISI) can occur, and this becomes more severe as data rate and signal 

bandwidth increases. In order to develop a high-performance CPNC radio system, all of 

these channel characteristics, along with some other characteristics such as spatial 

correlation, inter-band correlation and Doppler spread, must be known—at least in a 

statistical sense [6]. 

The existing studies on the AG channel (which is identical to the ground-to-air 

(GA) channel via reciprocity) are very limited relative to those on terrestrial channels. 
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Most past research only considered tall ground sites (GSs) in wide open areas, and 

narrow band signals. Some analytical and measurement results exist for different 

frequency bands, but very little exists on attenuation caused by the airframe itself 

(airframe shadowing). For UAS applications, operation may be at very low altitudes, and 

in cluttered areas, and for these settings, minimal work exists on explicit AG channel 

characteristics [7] and [8]. The previous studies will be reviewed in Chapter 2. 

The AG channel characterization on which we have worked is based on a large 

amount of empirical data taken in different scenarios, including over sea, over fresh 

water, hilly terrain, mountainous terrain, near-urban, suburban and desert. Our 

measurements cover the two UAS bands with one transmitter and two receivers in each 

band – this is termed a single-input multiple-output (SIMO) channel for each band. More 

measurements that address GS antenna diversity and different GS antenna heights may 

also be conducted. From these measurements and from analysis, we have quantied the 

AG channel’s path loss, root-mean-square delay spread (RMS-DS), inter-band and spatial 

correlation for a specific antenna arrangement, and Doppler shift/spread. From all these 

channel characteristics, statistical tapped delay line (TDL) models for the AG channels 

have been generated. 

1.3 NON-STATIONARY CHANNELS 

The so-called wide-sense stationary (WSS) channel is defined as one for which 

the fading statistics do not change over a short interval [9] (or equivalently for mobile 

platforms, over a short distance). An uncorrelated scattering (US) channel is one in which 

the contributions from primary scatterers with different delays are uncorrelated. The 

correlation between MPCs is another important channel feature. With the (common) 



www.manaraa.com

6 
 

assumption of a WSS-US channel, Doppler spread can be estimated from the 

autocorrelation of the channel impulse response (CIR) via time-frequency transform (the 

Fourier transform). 

Mobility causes channel time variation and Doppler shifts. The velocity of a 

typical aircraft may be a few hundred meters per second, which is much larger than that 

in terrestrial channels. The relative velocity between aircraft and potential reflectors on 

the ground can be much slower, depending upon link geometry. The estimation of 

stationarity intervals (or distances, given a specific velocity) is of interest for the CPNC 

design. No explicit study on this has been reported as far as we are aware. 

1.4 DISSERTATION OBJECTIVES 

In this section, a list of the dissertation objectives is presented. 

1. [Chapter 2] Perform a literature review of the state of art on characterization of 

aeronautical radio propagation channels. 

Review typical aeronautical communication systems and their operating 

frequency, bandwidth, modulation and other physical layer technologies. Review 

the existing studies on AG channel measurements, simulations and models, and 

note the main conclusions and findings. Discuss the major gaps that we fill in the 

dissertation. 

2. [Chapter 3] Describe the measurements, initial data processing algorithms and 

evaluation of stationarity distance. 

Present the NASA AG channel measurement campaign and detailed description 

of the measurement system including channel sounder, aircraft, ground station 

and antennas. Describe the algorithms used for “raw” data processing, noise 
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removal and alignment of power delay profiles (PDP) to GPS data. Describe the 

performance of the channel sounder in a back-to-back mode. Describe estimation 

of the stationarity distance (where the channel characteristics are wide sense 

stationary) based on measured data. 

3. [Chapter 4] Develop earth surface reflection based deterministic models and 

provide their limitations and corrections. 

Generate both flat earth two-ray (FE2R) and curved earth two-ray (CE2R) 

analytical channel models. Obtain improvements for the CE2R model, including 

incorporation of spherical earth divergence, atmospheric refraction and earth 

surface roughness. Indicate the limitations of the CE2R model for AG channels. 

Discuss other effects for the AG channel, including those from atmospheric gases, 

hydrometeor attenuation, and ducting. 

4. [Chapter 5] Generate narrowband AG channel models that address path loss, 

small scale fading and airframe shadowing. 

Develop both log-distance and corrected CE2R path loss models based on 

empirical data for different scenarios. Estimate the small scale fading Ricean K 

factor. Model shadowing by aircraft wings in some special maneuvers. 

5. [Chapter 6] Quantify delay dispersion and multipath components. 

Report the measured RMS-DS and illustrate dynamics via example sequences of 

PDPs. Develop TDL models for the AG channels that quantify MPC probability 

of presence (“on” probability or “birth” of MPCs), magnitude and fading, phase, 

delay, and duration. 

6. [Chapter 7] Investigate inter-receiver correlations. 
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Quantify the spatial correlation between two intra-band aircraft antennas via both 

analytical CE2R method and measured data. Evaluate the relation between C-

band and L-band LOS components by estimating their cross correlation. 

7. [Chapter 8]  Summarize the dissertation and indicate future work. 

1.5 DISSERTATION CONTRIBUTIONS 

The project “Unmanned Aircraft Systems (UAS) Research: The AG Channel, 

Robust Waveforms, and Aeronautical Network Simulations” started in August 2012. We 

have eight project reports submitted to NASA GRC and I co-authored six of them. We 

have three journal papers and eleven conference papers published or submitted
3
. 

In addition to the NASA project, I have five journal papers and seven conference 

papers (some of them are still under review) focusing on indoor propagation channels and 

vehicle-to-vehicle (V2V) channels. 

NASA Reports: 

[R1] D. W. Matolak, R. Sun, “AG Channel Measurement & Modeling Results for Over-

Water & Hilly Terrain Conditions,” (Report #7) NASA Grant #NNX12AR56G, 26 

September 2014. 

[R2] D. W. Matolak, R. Sun, “AG Channel Measurement & Modeling Results for Over-

Sea Conditions,” (Report #6) NASA Grant #NNX12AR56G, 3 December 2013. 

[R3] D. W. Matolak, “AG Channel Measurements & Modeling: Year One Results,” 

NASA Grant #NNX12AR56G, 26 July 2013 

[R4] D. W. Matolak, R. Sun, “AG Channel Measurements & Modeling: BVS Channel 

Sounder Performance: Measurement Stability,” (Report #5) NASA Grant 

#NNX12AR56G, 19 April 2013. 

                                                           
3
 The notation J denotes journal paper, C denotes conference paper and R denotes technical reports. 
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[R5] D. W. Matolak, R. Sun, “AG Channel Measurements & Modeling: Initial Channel 

Sounder Laboratory & Flight Tests—Supplementary Report,” (Report #4) NASA Grant 

#NNX12AR56G, 1 March 2013. 

[R6] D. W. Matolak, R. Sun, “AG Channel Measurements & Modeling: Initial Channel 

Sounder Laboratory & Flight Tests,” (Report #3) NASA Grant # NNX12AR56G, 29 

January 2013. 

[R7] D. W. Matolak, R. Sun, “AG Channel Measurements & Modeling: Initial Analysis 

& Flight Test Planning,” (Report #2) NASA Grant #NNX12AD53G, 8 June 2012. 

[R8] D. W. Matolak, “The Air-Ground Channel: Literature Review, and Channel 

Modeling for UAS Transmission Scheme Design and Evaluation,” (Report #1) NASA 

Grant #NNX12AD53G, 29 June 2011. 

 

Articles from the AG channel project: 

[J1] D. W. Matolak, R. Sun, “Air-Ground Channel Characterization for Unmanned 

Aircraft Systems—Part I: Methods, Measurements, and Models for Over-water Settings,” 

IEEE Transactions on Vehicular Technology, Submitted, Mar. 2015. 

[J2] D. W. Matolak, R. Sun, “Unmanned Aircraft Systems: Air-Ground Channel 

Characterization for Future Applications,” IEEE Vehicular Technology Magazine, vol. 10, 

no. 2, pp. 79-85, June 2015. 

[J3] D. W. Matolak, R. Sun, “Air-Ground Channel Measurements and Modeling for 

UAS,” IEEE A&E Systems Magazine, vol. 29, no. 11, pp. 30-35, Nov. 2014 (invited, 

converted from a conference paper [8]). 

[C1] D. W. Matolak, R. Sun, “Effects of Stationarity Distance on Small Scale Channel 
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Statistics in Air-Ground Channels,” 2016 IEEE Aerospace Conference, Submitted, Big 

Sky, MT, 5-12 March 2016. 

[C2] D. W. Matolak, R. Sun, “Air-Ground Channel Characterization for Unmanned 

Aircraft Systems: the Near-Urban Environment,” 2015 Military Communications 

Conference (MILCOM 2015), Submitted, Tampa, FL, 26-28 Oct. 2015. 

[C3] R. Sun, D. W. Matolak, “Air-Ground Channel Characterization for Unmanned 

Aircraft Systems: the Mountainous Environment,” 2015 IEEE/AIAA 34th Digital 

Avionics Systems Conference (DASC 2015), Accepted, Prague, Czech Republic, 13-17 

September 2015. 

[C4] H. Jamal, D. W. Matolak, R. Sun, “Comparison of L-DACS and FBMC 

Performance in Over-water Air-Ground Channels,” 2015 IEEE/AIAA 34th Digital 

Avionics Systems Conference (DASC 2015), Accepted, Prague, Czech Republic, 13-17 

September 2015. 

[C5] R. Sun, D. W. Matolak, “Initial Results for Airframe Shadowing in L- and C-band 

Air-Ground Channels,” 2015 Integrated Communications, Navigation and Surveillance 

(ICNS) Conference, pp. , Herndon, VA, 21-23 April 2015. (Won the best student paper). 

[C6] R. Sun, D. W. Matolak, “Over-Harbor Channel Modeling with Directional Ground 

Station Antennas for the Air-Ground Channel,” 2014 Military Communications 

Conference (MILCOM 2014), pp. 1-6, Baltimore, MD, 6-8 Oct. 2014. 

[C7] D. W. Matolak, R. Sun, “Antenna and Frequency Diversity in the Unmanned 

Aircraft Systems Bands for the Over-Sea Setting,” 2014 IEEE/AIAA 33rd Digital 

Avionics Systems Conference (DASC 2014), pp. 6A4-1 - 6A4-10, Colorado Springs, CO, 

5-9 Oct. 2014. 
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[C8] D. W. Matolak, R. Sun, “Air-Ground Channel Characterization for Unmanned 

Aircraft Systems: the Hilly Suburban Environment,” 2014 IEEE 80th Vehicular 

Technology Conference (VTC’14 Fall), pp. 1-5, Vancouver, Canada, 14-17 Sept. 2014. 

[C9] D. W. Matolak, R. Sun, “Air-Ground Channel Characterization for Unmanned 

Aircraft Systems: The Over-Freshwater Setting,” 2014 Integrated Communications, 

Navigation and Surveillance (ICNS) Conference, pp. 1-9, Herndon, VA, 8-10 April 2014. 

(Won the best session paper). 

[C10] D. W. Matolak, R. Sun, “Initial Results for Air-Ground Channel Measurements & 

Modeling for Unmanned Aircraft Systems: Over-Sea,” 2014 IEEE Aerospace 

Conference, pp. 1-15, Big Sky, MT, 1-8 March 2014. 

[C11] D. W. Matolak, R. Sun, “Air-Ground Channel Measurements & Modeling for 

UAS,” 2013 Integrated Communication, Navigation and Surveillance (ICNS) 

Conference, pp. 1-9, Herndon, VA, 22-25 April 2013. (Won the third place of 

professional paper). 

 

Articles outside the AG channel project: 

[J1] R. Sun, D. W. Matolak, P. Liu, “5-GHz V2V Channel Characteristics for Parking 

Garages,” IEEE Transactions on Vehicular Technology, Submitted, May 2015. 

[J2] P. Liu, D. W. Matolak, B. Ai, R. Sun, Y. Li, “5 GHz Vehicle-to-Vehicle Channel 

Characterization for Example Overpass Channels” IEEE Transactions on Vehicular 

Technology, Accepted, May 2015. 

[J3] R. Sun, D. W. Matolak, “Path Loss and Delay Spread for the Stairwell Channel at 5 

GHz,” International Journal of Communication Systems, Early view: 
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IEEE Transactions on Wireless Communications, vol. 12, no. 10, pp. 5138-5145, Oct. 

2013. 
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CHAPTER 2 

LITERATURE REVIEW

2.1 VHF AG CHANNEL 

A number of typical civil air-ground aeronautical communications systems are 

listed in Table 2.1. The Aircraft Communications Addressing and Reporting System 

(ACARS) may be viewed as a pioneer of modern air-ground communications system. 

ACARS operates in the very high frequency (VHF) band. It was developed in 1978 and 

employed analog radio with amplitude modulation [10]. Voice signals sent over radios 

with bandwidth of approximately 3 kHz were implemented in ACARS for providing 

flight services and operating Air Traffic Control (ATC) system functions. 

In order to increase the capacity and improve the performance, the VHF digital 

link or VHF data link (VDL) standards were defined by the Aeronautical Mobile 

Communications Panel (AMCP) in the 1990s [11]. The 19 MHz bandwidth allocated to 

aeronautical communications in the VHF band (118-137 MHz) is also used for VDL 

applications. The VHF band for VDL is divided into 760 channels with 25 kHz for each 

channel [12]. A more sophisticated aeronautical system is the broadband VHF (B-VHF) 

aeronautical communication system, which is based on multi-carrier code division 

multiple address (MC-CDMA) [13]. Orthogonal frequency-division multiplexing 

(OFDM) is employed in B-VHF with subcarrier spacing of 2 kHz. The B-VHF system 

has not been implemented. The majority of studies for VHF band aeronautical channels 
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Table 2.1. Typical Air-Ground Aeronautical Communications Systems. 

Name Band BW Modulation Year Designer Comments 

Aircraft 

Communications 

Addressing and 
Reporting 

(ACARS) [10] 

VHF, 118-

137 MHz 
3 kHz/channel AM 1978 

ARINC Inc. (now part 

of Rockwell Collins 
Inc.) 

A pioneer 

“modern” 

aeronautical 
communication 

system 

VHF Digital Link 
(VDL) [11] 

VHF, 118-
137 MHz  

19 MHz 

(25kHzX760 

channels) 

D8PSK 1990s 

Aeronautical Mobile 

Communications Panel 
(AMCP) under 

EUROCONTROL [14] 

Upgraded from 
ACARS 

Broadband VHF 

(B-VHF) [13] 

VHF, 118-

137 MHz 
2 kHz/subcarrier 

MC-

CDMA+OFDM  

European 6th 

Framework (FP6) 

program 

First multi-carrier 

modulation 

aeronautical link 

(not implemented 

to date) 

Universal Access 

Transceiver (UAT) 
[15] 

L-band, 

978 MHz 
3 MHz TDMA+BCPFSK 2002 

 

Designed for 
surveillance, 

Automatic 

Dependent 
Surveillance — 

Broadcast (ADS-

B) 

Project 34 (P34) 

[16] 

767-773 

MHz  

(Forward 
Link) 797-

803 

(Reverse 
Link) 

5.4 kHz/sub-

channel X 8, 16, 

24 channels = 
50, 100,150 kHz 

OFDM 2003 

Electronic Industry 

Association (EIA) & 
Telecommunications 

Industry Association 

(TIA) 

Designed for 

public safety; 

candidate for 
future aeronautical 

communications 

(not implemented 
to date) 

Broadband 

Aeronautical 
Multi-Carrier 

System (B-AMC) 

[17] 

L-band, 
980-1140 

MHz 

10.416 kHz/sub-

channel  X 48 

sub-channels = 
500 kHz 

FDD+OFDM 2007 
FAA & 

EUROCONTROL 

Upgraded from B-

VHF 

(not implemented 
to date) 

L-band Digital 

Aeronautical 

Communication 
System of Type 1 

(L-DACS1) [18] 

[19] 

L-band, 

960-1164 

MHz 

9.76 kHz/sub-

channel X 51 
channel = 498 

kHz 

FDD+OFDM 2009 EUROCONTROL 

Based on B-AMC 
& P34, similar to 

WiMAX (not 

implemented to 
date) 

L-band Digital 

Aeronautical 
Communication 

System of Type 2 

(L-DACS2) [20] 

L-band, 
960-975 

MHz 

200 

kHz/channel 
TDD+GMSK 2009 EUROCONTROL 

Based on GSM, 
UAT and VDL 

Two proposed 

systems (not 
implemented to 

date) 

Microwave 
Landing System 

(MLS) [21] 

C-band, 

5031-

5090.7 
MHz 

300 kHz FM 1980s 
FAA, NASA & US 

DOD 

All-weather, 

precision but short 

range landing 
system 

Control and Non-

Payload 

Communications 
(CNPC) 

L-band, 
960-977 

MHz & C-

band, 
5030-5091 

MHz 

Being designed 

Radio Technical 

Commission for 

Aeronautics (RTCA) 
under US DOT 

Designed for UAS 
integration into 

NAS 
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were before the new millennium. A summary of previous studies is provided in Table 

2.2. 

Reference [22] is the one of the earliest papers on the AG channel. The path loss 

was reported in the VHF band with aircraft altitude in the range from 10,000 to 30,000 ft. 

over the Pacific Ocean. The GS antennas were two dipole arrays elevated to 1450 and 

1600 ft. above sea level. Beyond-the-horizon or 500+ miles propagation was proved 

possible for AG channel. In [23], based on empirical data, tree attenuation in the VHF 

band with vertically polarized antennas was found to be approximately 1.5 dB/100 ft. if 

the signal propagates through a forest. The signal is attenuated by 0.7 dB/100 ft. if it 

passes within 0.5 Fresnel ellipses. However, the 0.5 Fresnel ellipses were not defined. 

Reference [24] is one of the first stochastic AG channel models. Analytical 

autocorrelation of two quadrature parts of the diffuse component and power spectrum of 

the diffuse component were proposed and validated by empirical results at UHF/VHF. 

The aircraft height was 4,000 ft. with velocity of 270 miles/hour within ranges of 18 

miles. The LOS component was always strong and the Ricean fading model was 

concluded as being appropriate, but no Ricean K factor was reported. Based on AG 

measurements conducted near an airport in France, large scale path loss is modeled a 

two-ray (combined by the LOS component and ground reflection) model with free space 

mean power in [25]. 

References [26] and [27] are the first on wideband AG channel models. The 

measurement equipment was a sliding correlator at 135 MHz with chip rate of 5 

MChips/s. The signal bandwidth was ~4 MHz. Based on two measurements taken in 

airports at Aspen, CO, and Duluth MN, the Ricean K factor ranged from 2.6 to 19.7 dB 
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with an average of 16 dB. No distributions of K-factor were reported. Two ray effects 

were observed, and the channel dispersion, quantified by the RMS-DS, was on average 4 

microseconds and followed a Gaussian distribution with standard deviation of 1.2/1.5 

microseconds. The path loss exponent was smaller than 2 near the airport and explained 

by ducting; the exponent was approximately 4 at large distances for Aspen. The large 

distance path loss exponent was close to 2 in Duluth and the authors concluded this as 

evidence of the absence of a strong ground reflection. Detailed information about the 

flight test was not provided, such as aircraft and GS altitudes, distance, velocity, antenna 

patterns and weather. 

The authors of [28] classified the aeronautical channel into several classes: 

parking, taxiing, en-route and landing. The Doppler power spectrum, Ricean K factor and 

delay statistics in the VHF band were summarized based on previous studies [29], [30], 

[24], [25]. Wideband aeronautical channel models for implementation of channel 

emulators were proposed. No new results were provided, and the previous studies used 

by the authors rely on some terrestrial channels, not completely appropriate for the AG 

setting. The authors expanded their work in [31] with more details. The bit error ratio 

(BER) of OFDM quadrature phase-shift keying (QPSK), estimated via simulations, was 

reported based on the channel models. 

2.2 L-BAND AG CHANNEL 

Due to the congestion in the VHF band, many new aeronautical links were 

proposed in L-band, as listed in Table 2.1, including Universal Access Transceiver 

(UAT) [15] for surveillance, Broadband Aeronautical Multi-Carrier System (B-AMC) 

[17], L-band Digital Aeronautical Communication System of Type 1 (L-DACS1) [18] 
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and [19], L-band Digital Aeronautical Communication System of Type 2 (L-DACS2) 

[20] and CNPC. Another cluster of publications for the AG channel pertains to L-band. In 

[32], only the surface reflection was considered as multipath. An analytical two-ray 

model was derived and validated with narrowband experimental data taken in L-band 

(1463 MHz) with both vertical and horizontal polarizations. The surface roughness was 

modeled as a Gaussian variable which only affects the magnitude of the reflection 

coefficient. The measurements were made for reflection areas including calm ocean, 

swamp and cultivated fields. In [33], over ocean data was collected at 1.6 GHz between a 

satellite and aircraft. Amplitude, power spectral density, polarization and selective fading 

properties were reported. In [34], narrowband AG channel measurements were conducted 

near Chicago and San Francisco at 900 MHz. The GS height was 5~12 meters and 

aircraft altitude was up to 13,000 m. The link distance reached up to 320 km. The path 

loss was modeled via the two-ray model. Three sets of narrowband downlink (Tx on the 

aircraft & Rx on the ground) tests were taken at 2.3 GHz over desert and ocean in [35]. 

The Ricean K factor ranged from 7 to 24 dB. The AG channel was modeled as composite 

of LOS, earth surface reflection and diffuse components. Note that multipath was 

suppressed by using a very high gain tracking receiver antenna which yields very narrow 

beamwidth. The data sets show that the AG channel can be well approximated by an 

additive white Gaussian noise (AWGN) channel with a strong specular reflection whose 

amplitude is 20% to 80% that of the LOS, and with diffuse MPCs whose power is 10 to 

20 dB smaller than that of the LOS. The K factor decreased as the earth surface reflection 

coefficient increases. As in other publications, much detailed information in [35] is 

missing, including altitude, grazing angle. One data segment in [35] had a K factor of -48 
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dB, and this was explained by strong reflections by the wing and fuselage during some 

specific maneuvers. The specular reflection coefficient was estimated by the maximum 

likelihood (ML) method. 

Space diversity of the AG channel was investigated in [36] at 2 GHz with a signal 

bandwidth of 12.5 kHz. Four identical Rx monopoles were elevated 1.5 m above ground 

with three locations (motionless) on an urban street. The antennas were on corners of a 

square with sides of 1.5 wavelengths. The Tx monopole was mounted on the bottom of 

an airship. The airship flew above the city of Prague, Czech Republic, with different 

routes. The distance ranged 1 to 6 km, the altitude was 100 to 170 m to achieve elevation 

angles from 1 to 6 degrees. The spatial correlation among different antennas was below 

0.3. The diversity gains with three diversity methods were reported with respect to 

elevation angle, location of Rxs and number of channels. The diversity gain did not 

significantly depend on elevation angle. The same authors of [36] expanded their work 

with four Rx antennas in wooded areas with measurements using similar experimental 

equipment [37]. The spatial correlation among antennas was below 0.2. Higher diversity 

gain was achieved in wooded areas than in open urban areas. In [38], the antenna 

diversity (spatial correlation) of AG UAV 802.11 Mesh Network was evaluated by 

packet loss instead of the typically used signal amplitude correlation. The frequency was 

not precisely specified, but was likely in the 2.4 GHz (Wi-Fi) band. 

The authors of [39] reported empirical AG channel results over a smooth surfaced 

dry lake bed in Edwards AFB in California at L & lower S-band with a 10 MHz 

bandwidth. A vertical omni-directional antenna was mounted on the aircraft and a 

parabolic reflector tracking antenna was used on the receiving ground station. The 



www.manaraa.com

20 
 

received power spectrum and reflection coefficient were evaluated. The AG channel was 

modeled as consisting of 3-rays: the LOS, specular reflection (relative amplitude 70~96% 

of LOS, excess delay 10-80 ns) and the third component (relative amplitude 2-8% of 

LOS, excess delay 155 ns, RMS-DS 74 ns). In [40], the same lead author of [39] 

conducted measurements at an army fort in Arizona. Four Tx antennas mounted on a 

helicopter (one on the roof, two on the bottom and one on the tail) with flight height of 

15-20 ft. Two tracking parabolic reflector Rx antennas were elevated 60 ft. above ground. 

The transmitted signal was centered at 1800 MHz (upper L-band) with a 50 MHz 

bandwidth. The authors found that a strong LOS was always present. The RMS-DS 

ranged from 15 to 153 ns. The maximum excess delay was 1300 ns (power of this 

corresponding MPC was more than 25 dB below the strongest one). The diversity gain of 

aircraft antennas was on average 13 dB. In [41], wideband measurements were conducted 

at 2.05 GHz. A 80 Mcps direct sequence spread spectrum (DSSS) transmitter with a 

vertically polarized monopole was mounted on an aircraft. The receiver was located on 

the campus of Virginia Tech, with a four-element antenna array a few meters above the 

ground. The aircraft flew along constant circles with elevation angles of 7.5, 15, 22.5 and 

30 degrees (altitude ranged from 1500 to 2100 feet above ground). Based on power delay 

profiles, the mean RMS-DS decreased from 98 to 18 ns as the elevation angle increased. 

Mean & maximum delay spreads were evaluated with 10, 20, 25 and 30 dB thresholds, 

and it was found that these delay spreads decrease as elevation angle increases. The 

number of MPCs was 7 or 8 for all elevation angles. The signal envelope followed a 

Ricean distribution but the Ricean K factor was not provided. Based on fading envelope 

CDFs, the authors concluded that small elevation angles have smaller K factors. Only 2.5 
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dB (modest) antenna diversity gains were achieved compared to a single monopole. A 

log-scale distance path loss model was reported at the end, with a path loss exponent of 

4.1 with standard deviation of 5 dB; this is questionable since the flight track was along a 

constant link distance circle. 

The authors of [42] simulated a coverage footprint for air-to-ground low altitude 

platforms in urban environments. The low altitude platforms (below 10,000 m) are 

motionless UAS that are designed to provide temporary wireless communication services 

as a base station. Two distinct 3-D simulations were conducted via ray-tracing and 

Matlab® at 700 MHz, 2 GHz and 5.8 GHz. Buildings were assumed to be cubic with a 

square horizontal cross section but different heights. According to ITU-R P.1410-2, the 

propagation environment is further classified into suburban, urban, dense urban, and high 

rise urban, based upon building density and heights. The propagation mechanisms are 

classified into three types: 1) LOS (free space); 2) NLOS but still receiving coverage via 

reflections and refraction; and 3) poor coverage that suffering deep fading resulting from 

consecutive reflections and diffractions. Path loss results were collected from the 

simulations, and path loss histograms and CDFs were provided; path loss was also 

estimated as a function of elevation angle. 

In [43], experimental data for an AG channel were collected in a rural area at 915 

MHz with a 10 MHz bandwidth signal. The aircraft was 200 m above the ground with 

two quarter wave helical transmitter antennas mounted under aircraft wings. A linear 

array of eight quarter wave helical antennas was mounted on the roof of a van for the 

ground station (the ground reflection is unlikely present). The aircraft flew along a circle 

with link distance less than 1 km. The RMS-DS was near 100 ns for most of the time but 
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reached a maximum of 500 ns. Spatial correlation at the GS was estimated as the cosine 

of the Hermitian angle, by which the presence of non-planar wave front was concluded. 

MIMO is useful to improve the outage probabilities and the channel capacity were also 

reported. 

2.3 C-BAND AG CHANNEL 

The limited spectrum available in L-band does not satisfy the demand of video 

services that may be desired for UAS. Dual-band links that employ both C-band and L-

band are being designed. In this configuration, the L-band can transmit low rate messages 

and provide large coverage while the C-band is used to transmit video signals at 

relatively short distances. The microwave landing system (MLS) [21] may be the earliest 

C-band application in the AG channel. It was designed in the 1980s and uses a signal 

bandwidth as large as 300 kHz. In [44], empirical narrowband data were collected at C-

band (5.8 GHz) near an airport. The aircraft (Tx) antenna was a monopole. The GS (Rx) 

used a directional antenna with beamwidth smaller than 10 degrees. The aircraft height 

was 300 ft. with distance up to 83 km. The K factor was reported as 0 dB for parking, 5 

dB for taxiing, 10 dB for landing and 15 dB for en-route conditions. The method used for 

K factor computation and the stationarity distance over which the K factor was computed 

are not provided. 

Meng and Lee published a series of AG channel papers in C-band. In [45], a blade 

monopole at 5.7 GHz was mounted on top of an aircraft. The aircraft flew along a circle 

with 5 km radius at height of 6.4 km and up to 102 km away from the GS. An elevated 

duct effect was not present. Wing shadowing occurred and was verified by roll and pitch 

angles. However, roll and pitch angles and the magnitude of shadowing were not 
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reported. Further study about the aircraft maneuvering shadowing effect was reported in 

[46]. Empirical data was collected on the South China Sea at 5.7 GHz with a straight 

flight track (FT) and a circular FT. Roll, pitch, yaw angles and received power over time 

were provided. The aircraft antenna was mounted on top of the aircraft, and flew at 3.2 

km height. Two GS antennas were at heights of 7.65 m and 2.1 m. The wing shadowing 

was found to be 9.5 dB for the straight FT and up to 28 dB for the circular FT. The 

standard deviation of the received power was 6.77 & 6.49 dB for the two GS antennas. 

The GS spatial diversity provided no improvement to mitigate the wing shadowing. 

A sounding system aiming for AG channel measurement at C-band was proposed 

in [47]. The system uses binary phase-shift keying (BPSK) modulation with 10 

MChips/s. It's somewhat surprising that 190 ns excess delay can be detected with 100 ns 

delay resolution (reciprocal of 10 MChips/s), so some sort of super-resolution algorithm 

may have been applied to the measured data. The detailed frequency, transmitting power, 

noise floor, PDP update rate, minimum RMS-DS were not provided. In [48], empirical 

data was collected at 5.7 GHz over the South China Sea with a 20 MChips/s channel 

sounder. Multiple GS antenna heights (7.65 & 2.1 m) were used. The aircraft flew at 

three different heights of 0.37 km, 0.91 km and 1.83 km. The GS spatial diversity was 

provided for three aircraft heights. The higher GS antenna was more likely to have 

multipath than the lower. Analysis of the same set of data as reported in [48] is extended 

in [49]. The aircraft flew straight toward the GS with distance from 45 to 95 km. The 

aircraft (Tx) used a blade monopole mounted under the nose of the aircraft and the GS 

(Rx) used two horn antennas with beamwidths of 20 (azimuth) and 25 (elevation) 

degrees. The over sea AG channel was modeled as 2-ray for 86% of the time or 3-ray for 
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95% of the time. The probability of receiving multiple rays increases in two conditions: 

1) as the height of GS increases, and 2) as the altitude of aircraft decreases. The 

probabilities of 1-7 rays were reported, but no excess delays of the multiple rays were 

provided. The RMS-DS was 20-40 ns for the 1.83 km and 0.91 km flight altitudes, and 

increased to 335-480 ns for the 0.37 km altitude. A surface duct was hypothesized as the 

lower GS antenna had a smaller path loss exponent than the higher antenna. The presence 

of an elevation duct was concluded from the path loss exponent n<1 for the 1.83 km 

altitude flight, whereas the value of n for the other altitudes was from 1.35 to 2.46. 

The authors of [50] conducted measurements in C-band (5.12 GHz) with a 20 

MHz bandwidth signal. Wing or engine shadowing was observed. Interesting to note is 

that the authors assumed the belly of an Airbus A320 (where the Rx blade monopole was 

mounted) was a very large ground plane. They used a numerical electromagnetics 

computation program (finite-difference time-domain, FDTD) to simulate the shadowing. 

Up to 15 dB shadowing loss was found and this fit the empirical path loss data. 

AG channel measurements made at 8 GHz and taken over the Pacific Ocean near 

Oxnard were reported in [51]. The Tx was an omni-directional blade antenna mounted on 

the bottom of the aircraft. The Rx was a parabolic reflector antenna with diameter of 4 ft. 

(beamwidth unknown). The altitude of the aircraft was 2500 ft. The equipment sampled 

at 100 MSamples/s. Measurements of two straight FTs were conducted. Surface 

roughness was discussed, but ducting was not mentioned. The distance range was not 

reported. The authors concluded a three-ray model was appropriate, and this includes an 

LOS component, sea-surface reflection and another reflection. The excess delay of the 

third ray was 69 ns (mean, with a maximum of 283 ns) for calm sea and 54 ns (mean, 
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maximum 199 ns) for rough sea. The RMS-DS was 31 ns for calm sea and 20 ns for 

rough sea. The specular reflection magnitude was estimated as 0.68 (-1.7 dB) and 0.52 (-

2.8 dB) relative to the LOS for calm and rough sea, respectively. The second reflection’s 

magnitude was 0.06 (-12.2 dB) and 0.09 (-10.5 dB) for calm and rough sea, respectively. 

Many publications do not address frequency dependence. The paper [52] is one of 

the most cited papers for aeronautical/satellite channels. The author provided a theoretical 

analysis of the earth surface scatter of the aeronautical channel between a satellite and 

aircraft. A 3D geometrically based single-bounce elliptical (GBSBE) model was 

proposed for the AG channel in [53]. This model is (roughly) frequency independent. The 

joint probability function for AOA and delay were derived as a function of elevation 

angle. The excess delay and AOA were found to increase with elevation angle. The 

authors only considered ground scattering (no buildings, trees and other obstacles), and 

the distribution of scatterers used in the simulation was not provided. The strength of 

scatterers was not reported either. The authors of [54] designed and conducted many tests 

between a UAV and ground site with commercial Wi-Fi equipment at 0.9 GHz, 2.4 GHz 

and 5.8 GHz. Not much useful results on the AG channel were reported. One interesting 

conclusion was that performance with a horizontally oriented aircraft antenna 

perpendicular to the flight direction was better than that with vertical antenna orientation 

and horizontal orientation parallel to the flight direction. Unfortunately, detailed 

information, including type, gain and pattern of both the GS and aircraft antennas, was 

missing. 

The authors of [55] generated path loss and shadowing models for the AG 

channel based on ray-tracing. The simulation pertains to an area of central Bristol, UK 
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with nine GS locations. The GS antenna height was 1.5 m. The aircraft altitude ranged 

from 100 to 2000 m. The frequency was 200 MHz to 5 GHz. An elevation angle based 

path loss model was proposed. The percentage of LOS/non-LOS (NLOS) regions and 

shadowing pdfs were reported as well. In [56], the authors note that the AG channel 

signal may be blocked by the wings or other parts of the aircraft itself. The authors 

provided a multi-antenna approach to overcome this issue. The performance of unitary 

space-time codes was evaluated via analysis & simulation, but no AG channel model was 

reported. The authors of [57] proposed a directional antenna based protocol for a UAV 

mobile ad hoc network (MANET). The performance including throughout, BER and end-

end delay were analyzed via simulations based on path loss model & K factors, but again 

no AG channel model was reported. 

2.4 GAPS IN AG CHANNEL STUDIES 

Most of the previous studies for the AG channel, both measurements and 

modeling, are for narrowband channels, and only for some specific GS local 

environments. Although some studies pertain to wideband channels, the mean RMS-DS 

values ranged from 25 to 4000 ns, which is an enormous span of more than two orders of 

magnitude. This indicates that substantial variety exists in these channels, and the variety 

has not been captured in detailed models. A TDL model was developed for the over sea 

environment only [58]. Other environments such as urban and suburban are expected to 

have more diffuse MPCs. 

The stationarity distance (SD) is critical in estimation of small scale fading and 

spatial correlation. Only recently, with attention paid to more rapidly time-varying 

channels (e.g, vehicle-to-vehicle [59]), and with more accurate channel characterizations  
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Table 2.2. Summary of Previous AG Channel Studies. 

Band Site 
K factor 

(dB) 

Bandwidth 

(MHz) 
στ (ns) 

Excess 

delay 

(ns) 

Comments Ref. 

VHF 

Over Sea -- 

Narrowband 

Beyond-the-horizon propagation was 

proved possible 
[22] 

Tree Cover -- 

Tree attenuation with vertical antennas 
is 1.5 (0.7) dB/100 ft. if the signal 

propagates through a forest (within 0.5 

Fresnel ellipses) 

[23] 

Chicago& 
Minneapolis 

-- 
First stochastic AG model. Rice fading 

was concluded. 
[24] 

Toulouse 

Blagnac 

Airport 
(France) 

-- 
Path loss is modeled by 2-ray with free 

space mean power. 
[25] 

Aspen, CO & 
Duluth MN 

16 
(2.6~19.7) 

4 

4000 

(mean), 
7200 

(max) 

-- First wideband model. [26] [27] 

-- -- -- -- -- 
Summary of published VHF results. 

Classify parking, taxiing, taking off, en-

route and landing scenarios. 

[28] [31] 

L-

band 

& 

lower 

S-

band 

NASA 

Wallops 
Station, VA 

-- 

Narrowband 

1453 MHz. [32] 

Over Sea -- 
Satellite-to-Aircraft channel at 1.6 

GHz. 
[33] 

Flew between 
Chicago and 

San Francisco 

-- Path loss was modeled as two-ray. [34] 

Desert & 
Over water 

9~15 
Empirical reflection coefficients were 

reported 
[35] 

Urban, 

Prague 
-- Spatial correlation and diversity gain. [36] 

Wooded area -- Spatial correlation and diversity gain. [37] 

Rural -- 
802.11 MESH network. Spatial 

correlation. 
[38] 

Dry lake bed -- 10 
74 

(mean) 
155 

(mean) 
Three rays. [39] 

Ft. Rucker, 

AL 
-- 50 15~153 

1300 

(max) 

Helicopter-to-ground channel with 4X2 

MIMO. 
[40] 

Virginia 
Tech. 

-- 80 18.3~98.1 89~1570 
Fading, antenna diversity were 

reported. 
[41] 

Rural, New 

York 
-- 10 

~100, 

<500 
-- 

2×8 MIMO antenna diversity, spatial 

correlation and channel capacity. 
[43] 

C-

band 

Sendai 
Airport, Japan 

0~15 

Narrowband 

K factor: parking 0 dB, taxiing 5 dB, 
landing 10 dB, en-route 15 dB. 

[44] 

Over Sea -- 
Wing shadowing found, but not 

modeled. 
[45] 

Over Sea -- Wing shadowing. [46] 

-- -- 10 -- -- Propose of sounding system in C-band. [47] 

Over Sea -- 20 -- -- 
Spatial diversity & statistics of 

multipath 
[48] 

Over Sea -- 20 20-480 -- 
PL model, MPCs occurrence 

probability vs. aircraft height. 
[49] 

Sonthofen 

(small city), 

Germany 

-- 20 -- -- Wing & engine shadowing. [50] 

Over Sea -- 
100 

MSamples/s 
25 

57 
(mean), 

283 

(max) 

8 GHz, three ray, modeled as 

calm/rough sea. 
[51] 

 



www.manaraa.com

28 
 

desired for wider bandwidths and longer durations, has SD even been considered. Several 

methods exist and estimates for SD for several terrestrial settings have been made [60]. 

However, the SD for AG channels has not been investigated yet, where the LOS 

component is predominant. In this setting the SD is expected to be larger than that in 

terrestrial channels. 

Airframe shadowing is a special characteristic for aeronautical channels. Airframe 

shadowing has not been explicitly studied in detail, and models for this effect are still not 

available, although some example data exists [46]. Therefore, comprehensive 

characterization of wideband AG channel stationarity distance and airframe shadowing is 

of great interest. 
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CHAPTER 3 

MEASUREMENT CAMPAIGN AND DATA PROCESSING ALGORITHMS

3.1 MEASUREMENT SITES 

Although we are not able to conduct tests for all possible environments, 

measurements were made with the GS in several of the most typical ground environments 

by NASA Glenn Research Center, including, 

 Over water: fresh water [61] & sea water [62] [63] [64] [58] [65] [66]; 

 Flat terrain: near urban [67], suburban, forest, desert; 

 Hilly terrain: suburban, forest [66] [68]; 

 Mountainous terrain [69]. 

Five measurement sites were selected in the United States, as shown in Figure 3.1. 

Cleveland, Ohio is the location of NASA Glenn Research Center. We conducted over 

fresh water, flat urban and suburban measurements in Cleveland; example FTs are shown 

in Figure 3.2. Hilly and suburban tests were taken in Latrobe, PA, which is a town in the 

Appalachian Mountains; see Figure 3.3. Telluride, CO, located in the Rocky Mountains 

as shown in Figure 3.4, was our mountainous site. Over sea water measurements were 

taken over the Pacific Ocean near Oxnard, CA (see Figure 3.5). Palmdale, CA is city with 

flat desert terrain but a mountain ridge to the southeast. We conducted flat suburban and 

hilly measurements in Palmdale. The detailed GS location descriptions are listed in Table 

3.1. Figures 3.7 and 3.8 show the view from the cockpit near Cleveland, and a view of the 

GS at Latrobe, respectively. 
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Figure 3.1. Measurement Sites in the United States. 

    

(a)     (b) 

Figure 3.2. Example FTs in Cleveland, OH, (a) over freshwater and urban taken on 

10/22/2013; (b) suburban taken on 09/05/2013. 
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(a)     (b) 

Figure 3.3. Example FTs in Latrobe, PA taken on 04/15/2013, (a) suburban (over Latrobe 

township); (b) hilly. 

 

Figure 3.4. Example FTs in Telluride, CO taken on 09/12/2013, mountainous. 
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Figure 3.5. Example FTs in Oxnard, CA taken on 06/11/2013, over sea. 

 

Figure 3.6. Example FTs in Palmdale, CA taken on 06/12/2013 and 06/13/2013, suburban 

and hilly. 
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Figure 3.7. View from the cockpit in Cleveland, OH. 
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Table 3.1. AG Channel Flight Test Environment Summary [70]. 

Test Test Date 
GS Location 

(elevation) 
GS Environment 

GS Location GS Antenna 

Boresight 

(ºrelative to 

magnetic 

north) 

Remarks 
Latitude Longitude 

1 
20 Mar 

2013 

NASA GRC 

(756’) 

Urban/suburban, 

some over-water, 

flat terrain 

41º 24’ 

51.9’’ 

-81º 51’ 

34.86’’ 
312 

AC altitude 

2700’ MSL 

2 
15 Apr 

2013 

Latrobe, PA 

(1137’) 

Orientation 1: mix 

of rural terrain & 

urban structures in 

valley, viewed 

from airport 

40º 16’ 

26.03” 

-79º 24’ 

8.49” 

40 
AC altitude 

3200’ MSL 

Orientation 2: GS 

antenna beam L to 

mountain ridge 

w/natural cover. 

Ridge extends 

into LOS between 

AC & GS 

137 

AC altitude 

3800’ MSL 

Ridge 

elevation 

1896’ MSL 

3 11 Jun 2013 
Oxnard, CA 

(16’) 

Open salt water 

w/few stationary 

structures & 

watercraft 

34º 10’ 

37.28” 

-119º 14’ 

7.386” 
270 

AC altitude 

2650’ MSL 

4 12 Jun 2013 
Palmdale, CA 

(2545’) 

Orientation 1: 

Open, flat desert 

& agricultural 

terrain. One 

structure in GS 

foreground 
34º 36’ 

30.864” 

-118º 4’ 

34.032” 

75 
AC altitude 

5725’ MSL 

Orientation 2: 

Flat, desert, urban 

residential with 

low structures in 

foreground. Dry, 

hilly terrain with 

natural cover. 

147 

AC altitude 

8950’ 

MSL, 

Mtn heights 

3000-5500’ 

5 5 Sep 2013 
Cleveland, OH 

(772’) 

Suburban, some 

over-water, flat 

terrain 

41° 24’ 

52.206” 

-81°51’ 

35.346” 
312 

AC altitude 

2500’ MSL 

6 
12 Sep 

2013 

Telluride, CO 

(9000’) 

Very mountainous 

terrain 

37º 57’ 

14.55” 

-107º 54’ 

15.57” 
284 

AC altitude 

12,800’ 

MSL 

7 22 Oct 2013 
Cleveland, OH 

(582’) 

Orientation 1: 

open freshwater 

41º 29’ 

33.80” 

-81º 44’ 

05.48” 

360 

AC altitude 

2500’ MSL 

Orientation 2: 

Cityscape view 

w/many tall 

buildings on flat 

terrain, adjoining 

open freshwater 

56 
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Figure 3.8. View of the GS in Latrobe, PA. 

3.2 EQUIPMENT DESCRIPTION 

The measurement system is composed of a channel sounder, the GS and aircraft 

antennas, an airplane and a transportable GS antenna tower, as well as RF cables and 

amplifiers. The details are described in this section. 

3.2.1 CHANNEL SOUNDER 

For our tests, NASA has sponsored development of a dual-band, single input 

multiple output (SIMO) antennas test set, termed the channel sounder. With 

specifications by the project principal investigator and NASA engineers, the sounder has 

been developed by Berkeley Varitronics Systems (BVS) [71]. The sounder is a direct 

sequence spread spectrum (DS-SS) stepped correlator. The transmitter unit includes an L-
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band and a C-band transmitter. Two receiver units that are exactly the same were 

developed. Each of them contains both an L-band and a C-band receiver. This 

configuration allows us to make SIMO measurements simultaneously in both bands. A 

diagram of the sounder structure is shown in Figure 3.9. The detailed specifications are 

listed in Table 3.2. Photos of the transmitter and receiver are shown in Figure 3.10. 

The transmit power is 10 Watts. A 7 dB gain high-power amplifier (HPA) is used 

at the C-band transmitter and low noise amplifiers (LNAs) are employed at all the 

receivers (15.5 dB gain in L-band and 30 dB gain in C-band). The cable loss is 4 dB in L-

band and 7.5 dB in C-band. The HPA and LNAs are employed to extend the link range. 

The output of the sounder is power delay profiles, which is the “power version” of 

the CIR. The maximum PDP update rate is 3000 PDPs per second. The frequency range 

is 960-977 MHz in L-band and 5000-5150 MHz in C-band. The center frequencies 

employed in the measurements were 968 MHz in L-band and 5060 MHz in C-band. The 

delay resolution is 200 ns (5 Mchips/s) in L-band and 20 ns (50 Mchips/s) in C-band. The 

PN sequence length is 1023 which yields a full delay span of 204.6 μs in L-band and 

20.46 μs in C-band.  

The sounder has multiple modes of operation, including (a) no filter mode, which 

records all 1023 chips of a PDP but yields the lowest PDP update rate; (b) power 

threshold mode, which only records samples whose power is no smaller than N dB (N can 

be set in the receiver software) below the power of the strongest sample; (c) delay 

window mode, which only records selected samples over a user-selected delay range; (d) 

peak limit mode, which only records the M (M can be set in the receiver software) largest 

chips. The power threshold mode b) was employed in the AG channel flight 
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measurements and the threshold was set to 25 dB. In mode (b) the PDP update rate 

ranges from 1.5 kHz to 3 kHz, and this can depend upon signal to noise ratio (SNR) as 

well. 

The thermal noise at the Rx was evaluated in multiple conditions: (a) in the lab, 

with the receivers terminated by matched loads; (b) in the aircraft on the ground with all 

aircraft electronics turned on and receivers terminated by matched loads; and (c) in the 

aircraft en-route with receivers connected to LNAs and antennas, but the transmitter 

powered off. With a 5 × 10−4 false alarm probability (the probability that noise is 

identified as signal), noise level is approximately -80 dBm for the C-band receivers. The 

detailed analysis of thermal noise was reported in Appendix B of [65]. If we take 1 km as 

a reference distance, the dynamic range (the received power range between the 

theoretical maximum input value and the noise level) is approximately 60 dB in C-band. 

The dynamic range for the L-band receivers is approximately 74 dB. 

 

Figure 3.9. AG channel sounder structure [8]. 

Table 3.2. Channel sounder specifications. 

Band 
Signal 

Bandwidth 

(MHz) 

Frequency 

Span (MHz) 

Maximum 

Delay Span (s) 

Transmit 

Power (W) 

Amplifier 

(dB) 

LNA 

Gain 

(dB) 

Cable 

Loss (dB) 

L 5 960-977 204.6 10 -- 15.5 4 

C 50 5000-5150 20.46 10 7 30 7.5 



www.manaraa.com

38 
 

 

Figure 3.10. Sounder Tx (left) and Rx (right, 1 of 2). 

3.2.2 AIRCRAFT AND TRANSPORTABLE GS 

The GRC test airplane on which the receivers are mounted is a Lockheed S-3B 

Viking; the locations of antennas are shown in Figure 3.11. The four aircraft antennas 

were on corners of a rectangle, the side lengths are 49 inches (1.24 m) between C-band 

Rx1 and L-band Rx1 and 52.5 inches (1.33 m) between C-band Rx2 and L-band Rx1. 

The intra-band separation distance (diagonal) is 1.82 m, as shown in Figure 3.12. The 

transmission antennas are elevated at the ground station by a tower. Figure 3.13 shows 

the transportable GS tower. The GS employs a 7 kW generator for powering all 
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components, a pneumatically-extendable (~4 m – 20 m) tower, and a cabinet for the 

electronic test equipment. 

 

Figure 3.11. GRC aircraft. 
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Figure 3.12. Aircraft antenna locations. 
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Figure 3.13. Transportable tower & GS. 

3.2.3 ANTENNAS 

The GS antennas are sector antennas designed by Cobham Antenna Systems [72], 

as shown in Figure 3.14. The C-band antenna model number is SA6-180-51V/559 and 

the L-band antenna model number is SA5-120-0.96-1.22V/1969. The gains are ~ 6.1 dB 

for C-band, and ~5.1 dB for L-band, with elevation/azimuth beamwidths of 35º/180º for 
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C-band and 60º/120º for L-band. The GS antenna patterns for both bands are shown 

Figures 3.15 and 3.16. 

 

Figure 3.14. C-band (left) and L-band (right) GS antennas. 
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(c) 

Figure 3.15. GS antenna pattern in C-band: (a) azimuth plane in dBi; (b) elevation plane 

in dBi; (c) three dimensional in linear scale. 
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(c) 

Figure 3.16. GS antenna pattern in L-band: (a) azimuth plane in dBi; (b) elevation plane 

in dBi; (c) three dimensional in linear scale. 

The monopole “blade” antennas used on the aircraft are designed by Sensor 

Systems, Inc. [73]. The model numbers are S65-5366-4M for the C-band antenna and 

S65-5366-3L for the L-band antenna; these are shown in Figures 3.17 and 3.18, 

respectively. They are approximately omni-directional in azimuth, with maximum gain of 

5 dB. The patterns provided by the manufacture are shown in Figure 3.19, in which the 

antennas are assumed mounted on the roof of the AC, but in our AG channel 

measurements the antennas were mounted under the belly of the AC, hence the actual 

patterns shown in Figure 3.15 should be flipped over. The patterns were actually 

measured on a one meter by one meter metal ground plate in an anechoic chamber 

instead of mounted on the aircraft. However, the airframe where the antennas mounted is 

a large metal ground plane. The patterns are strongly affected by the metallic body of the 
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aircraft, which introduces uncertainties into our measurements. We employ measured GS 

and AC antenna pattern data in our path loss analysis. 

 

Figure 3.17. C-band AC blade antenna with LNA. 
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Figure 3.18. L-band AC blade antenna with LNA. 

  

(a)      (b) 

Figure 3.19. AC antenna patterns in the elevation plane in (a) C-band; and (b) L-band 

[73]. 



www.manaraa.com

47 
 

3.2.4 EXAMPLE OF DATA FORMAT 

We have four sets of input data from our flight test measurements: 1) PDPs 

recorded by the (four) sounder receivers; 2) GPS data recorded by the aircraft; 3) GPS 

information and antenna orientations of the GS; 4) other constant parameters including 

GS/Aircraft antenna patterns, transmitted power, cable loss, amplifier gain, bandwidth, 

and the conductivity, permittivity and permeability of the earth surface (ground or water). 

Examples of PDPs are shown in Figure 3.20. These files include a Unix time 

stamp, total received power in dBm, and the highlighted grey columns are the actual PDP 

samples. The PDP is composed of position, which corresponds to relative delay, and the 

in-phase (I) and quadradure (Q) amplitude of each sample; we may record up to 2046 

samples per PDP. As noted, a multipath thresold is applied so that all the samples X dB 

weaker than the strongest one are removed (we used X=25). The threshold affects the 

PDP update rate, which is ideally up to 3000 Hz. The internal GPS receiver of the 

sounder has not always worked properly, whereas the aircraft recorded GPS reliably, 

hence we used the aircraft GPS information for computing link distance vs. time. The two 

sets of data can be aligned by the Unix time stamp with an accuracy of 10
-7

 second. 

The aircraft data provides the Unix time stamp, location information of altitude, 

latitude and longitude, and flight attitude information of heading, pitch angle and roll 

angle. We can identify the occurrance of airframe shadowing, flight direction, and link 

distance difference between any two antennas by the flight attitude information. The 

aircraft data includes other information such as velocity, acceleration and so on, as shown 

in Figure 3.21. Only the highlighted yellow columns are used in the data processing. The 
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frame (lines in Figure 3.21) update rate is is approximately 1 Hz, which is much slow 

than the PDP update rate. 

 

Figure 3.20. Example sounder data (PDPs). 

 

Figure 3.21. Example airbus data (GPS & Flight Attitude). 

3.3 DATA PROCESSING ALGORITHM 

The overall data processing algorithm is shown in Figure 3.22. Yellow blocks 

denote inputs and green blocks are outputs. Parameters ε, μ and σ denote relative 

dielectric constant, conductivity in S/m and relative permeability of the earth surface, 

respectively. DLOS is the link distance between aircraft and the GS. The angles ∠Ele, ∠Azi, 

∠Heading, ∠Pitch, ∠Roll, and ∠Yaw are elevation angle, azimuth angle, heading, pitch and yaw 

angles of the aircraft in degrees, respectively. Parameters Gt, Gr and GLNA are transmitter 
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antenna gain, receiver and LNA gains in dBi, respectively. Term Pt is the transmit power 

and LC is the cable loss. The term Anlt PL denotes the path loss in dB estimated by the 

analytical two-ray method, and Meas PL denotes the measured path loss in dB. 

Since the sampling rate is twice the chip rate, two adjacent samples are combined 

vectorially. This process is called “pairing”. The number of chips per PDP is up to 1023 

(number of samples per PDP is up to 2046). Then we shift (circularly rotate) the strongest 

chip to the 5
th

 chip index (the MPCs are always later than the LOS component, but due to 

the effect of some analog filters applied in the sounder, a few chips prior to the LOS chip 

have appreciable energy as well, hence based upon the overall sounder filter response we 

choose five as the index of strongest chip). Several noise removal algorithms are applied. 

The “Noise thresholding” and “MPC persistence check” are the two steps to remove the 

noise. The processed PDPs can be aligned with link distance DLOS with the Unix time 

stamp. 
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Figure 3.22. Data processing algorithm. 
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Altitude, heading, pitch angle and roll angle are recorded by the aircraft data 

directly. The flight route, elevation angle, azimuth angle and link distance DLOS can be 

calculated by the GPS information of both aircraft and GS. 

The measured path loss PL can be computed by the total received power Pr, 

transmitted power Pt, antenna gains Gt , Gr, LNA gain GLNA and cable loss Lc, yielding 

𝑃𝐿 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 𝐺𝐿𝑁𝐴 − 𝐿𝑐 − 𝑃𝑟.     (3.1) 

The RMS-DS is the most widely used measure of time dispersion. It’s 

mathematically expressed by [74] 

𝜎𝜏 = √
∑ 𝛼𝑘

2𝜏𝑘
2𝐿−1

𝑘=0

∑ 𝛼𝑘
2𝐿−1

𝑘=0

− 𝜇𝜏
2,        (3.2) 

where k is the amplitude of the k
th

 MPC out of L total MPCs in the PDP, k is the k
th

 MPC 

delay (in increment of 20 ns for C-band and 200 ns for L-band), and  is the mean excess 

delay, given by 

𝜇𝜏 =
∑ 𝛼𝑘

2𝜏𝑘
𝐿−1
𝑘=0

∑ 𝛼𝑘
2𝐿−1

𝑘=0

.         (3.3) 

The occurrence of airframe shadowing or building/obstacle shadowing is evident 

in some of the PL values; these occurrences are verified using geometric information and 

terrain information. Generating shadowing models is one of our future tasks. A tapped 

delay line model and the correlation between taps can be derived from the processed 

PDPs as well. 

“Tap 1” in Fig. 17 pertains to the amplitude of strongest chip (LOS MPC). The 

cross correlation coefficient between the LOS MPC of two receivers is computed by 

equation (3.4) 

𝜌𝐴𝑅𝑥1,𝐴𝑅𝑥2
=

𝐸[(𝐴𝑅𝑥1−𝜇𝐴𝑅𝑥1
)(𝐴𝑅𝑥2−𝜇𝐴𝑅𝑥2

)]

𝜎𝐴𝑅𝑥1
𝜎𝐴𝑅𝑥2

     (3.4) 
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where the E denotes expectation, 𝐴𝑅𝑥1 = (𝐴𝑅𝑥1,1, 𝐴𝑅𝑥1,1, … , 𝐴𝑅𝑥1,𝑖, … , 𝐴𝑅𝑥1,𝑛) is the 

amplitude of the LOS component (a single chip per PDP) of receiver 1, and 𝐴𝑅𝑥2 =

(𝐴𝑅𝑥2,1, 𝐴𝑅𝑥2,1, … , 𝐴𝑅𝑥2,𝑖, … , 𝐴𝑅𝑥2,𝑛) is the amplitude of the LoS component of receiver 2. 

The “i’s” denote PDP Index, and the “n’s” denote the length of the vectors over which 

correlation is computed. Receivers 1 and 2 are two receivers in the same band for intra-

band correlation, but we also generalize to compute correlations across the two bands 

(inter-band correlation). 

The Doppler spectrum of the LOS components can be found via a the Fourier 

transform of “Tap 1” 𝐴𝑅𝑥1 or 𝐴𝑅𝑥2. These spectra will provide a measure of fading rate. 

3.3.1 GPS DATA PROCESSING 

The GPS data processing algorithm is illustrated in Figure 3.23. The GPS 

information is firstly converted to the earth-centered earth-fixed (ECEF) coordinates [75] 

by which the link distance DLOS and free space path loss PLFS can be easily computed, 

and then converted to the east, north up (ENU) coordinates [75] by which the elevation 

angle ∠Ele and azimuth angle ∠Azi can be estimated. The earth reflection based 

deterministic models--flat earth two ray and curved earth two ray--are computed using all 

the geometric information. Angles ∠Ele,2 and ∠Ele,3 denote the second and third elevation 

angle calculation methods based on flat and curved earth surfaces, respectively. Angle ∠φ 

is the grazing angle, and Γ denotes reflection coefficient. The phase delay ΔPhase is used 

to compute total path loss of the two ray models PLtot,2ray. The time delay ΔTime is 

employed to calculate the RMS delay spread. All the useful analytical results are saved in 

an “AnltRslt” matrix as inputs of the main data processing algorithm shown in Figure 

3.22. 
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Figure 3.23. GPS data processing algorithm. 
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3.3.2 RAW PDP PROCESSING 

The raw PDPs collected by NASA Glenn Research Center are in-phase (I) and 

quadrature (Q) components of samples. Each of the 1023 chips can be generated by 

combining two adjacent samples vectorially. Again, we call this step “pairing”. The 

pairing algorithm is illustrated in Figure 3.24. A multipath threshold MPThr of typically 

25 dB or 30 dB can be applied on chips, however, since a 25 dB power threshold was 

employed on samples when the sounder recorded the raw PDPs as described in section 

3.2.1, we do not apply the multipath threshold. Then the PDPs are circularly rotated so 

that the strongest chip (likely the LOS component) is at the fifth position out of 1023. 

The data of a whole FT may contain over one million PDPs; such file sizes cannot 

be processed by Matlab®, hence NASA Glenn Research Center divided the data into 

multiple files and each file included 10,000 PDPs. Letter i in Figure 3.24 denotes the file 

index. The processed PDPs are saved in matrices “BeforeNoiseThrd_PDP” and some 

important measured results such as the UNIX time stamp, total received power and power 

of the LOS chip are saved in matrices are saved in “MeasRslt”. Each of these matrices 

contains 10,000 PDPs as well. 
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Figure 3.24. Pairing algorithm. 
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3.3.3 NOISE THRESHOLDING ALGORITHMS 

Three noise thresholding algorithms are employed for the AG channel PDPs 

which are also discussed in Appendix C of [65] 

 power threshold based on noise level; 

 delay gate; 

 persistence check. 

The first two algorithms are illustrated in Figure 3.25. The analytical noise 

threshold is a constant for all scenarios, and this was estimated by a flight test with 

transmitter powered off, taken in Cleveland, OH in 10/22/2013. The empirical noise 

threshold is an instantaneous value evaluated by the power of chips at the latter part of a 

PDP where true MPCs are unlikely to be present (based upon analysis of the flight 

geometry), and using a false alarm probability of 0.0005 [65]. However, since the power 

threshold mode (see section 3.2.1) was set at the sounder so that most often, very few 

(often zero) noise chips were recorded, the empirical noise threshold is not applicable for 

all data. We hence employ the analytical threshold in the algorithm. If a noise chip with 

power below the noise threshold is found, the chip will be removed if it’s in C-band, and 

the whole PDP will be removed if it’s in L-band (the L-band sounder occasionally had 

“bad” PDPs that contained only noise chips due to an infrequent malfunction of the L-

band channel sounder). 

The second noise removal algorithm, the delay gate, is applied next. As noted, 

MPCs with chip index larger than 950 in C-band and 95 in L-band (excess delay of 

approximately 19 μs) are unlikely present for most flight geometries. These large-delay 

MPCs are removed since some noise chips stronger than the noise threshold may exist. 
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These noise chips remain after the analytical threshold if the false alarm probability is not 

small enough, but if we chose a smaller false alarm probability, some true MPCs may be 

removed by the noise threshold. The choice of false alarm probability is an engineering 

judgement. 

Even if the delay gate is not applied, chips with index larger than 950 need to be 

removed since a “false” MPC was present after the 950
th

 chip. This false MPC was 

discovered in laboratory tests, and is simply an anomalous (yet deterministic) result of 

sounder hardware/software imperfections. The detailed analysis regarding this false MPC 

was reported in [76]. The processed PDPs are saved in matrices “AfterNoiseThrd_PDP” 

and the RMS-DS is merged into the measured results matrices “MeasRslt”. 

The third noise removal algorithm, the MPC persistence check, is illustrated in 

Figure 3.26. If a MPC is present in a single PDP and never shows up again in nearby 

PDPs, it is almost surely noise. A true MPC must last for some period of time. We 

consider a MPC as a true MPC if it is present at least twice in 11 consecutive PDPs, 

otherwise it is removed. The processed PDPs are saved in matrices 

“AfterPersistCheck_PDP” and the RMS-DS is re-computed and merged into the 

measured results matrices “MeasRslt”. 
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Figure 3.25. Noise thresholding algorithms. 
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Figure 3.26. MPCs persistence check algorithm. 
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3.4 BACK-TO-BACK EVALUATION 

The sounder Tx and Rx were connected in a “back-to-back” (B2B) mode (Tx and 

Rx were connected directly by RF cables, attenuators and splitters, without any wireless 

channel) in the NASA GRC laboratory to confirm the sounder’s fundamental ability to 

resolve MPCs, and to gauge the actual measurable resolution in the delay domain. Since 

the sounder Tx must apply filtering for spectral containment, this affects the delay 

resolution. Most of the filtering is done digitally, and Figure 3.27 shows the filtering 

operations in both bands. Figure 3.28 shows a resulting L-band back-to-back impulse 

response, which is the response of the sounder itself, with an ideal channel (an RF cable). 

The response is the convolution of the Tx filters, Rx filters, and the (triangular) DS-SS 

sequence autocorrelation (the sequences are maximal-length shift register sequences 

typically called m-sequences [74]). The response (blue spikes) in Figure 3.28 is very 

close to that computed by analysis (red curve), using the known filter parameters of 

Figure 3.27 [70] and [77], thus confirming expected performance in this back-to-back 

case. 

 

(a) C-band filtering 

 

(b) L band filtering 

Figure 3.27. Signal processing associated with filtering for the (a) C-band and (b) L-band 

sounders. 
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Figure 3.28. Back to back L-band impulse response. 

Table 3.3 lists the RMS-DS of the single path back-to-back measurements in C-

band. The RMS-DS is approximately 10 ns, and it’s close to the analytical result of 8.3 

ns. The RMS-DS in L-band is approximately 100 ns [76]. 

We also conducted two-path back-to-back tests. The setup is shown in Figure 

3.29. Channel one is a short cable and channel two is a long cable along with a 15 dB 

attenuator. The relative delay between the two channels is 186 ns. As shown in Figure 

3.30, the two paths are unresolvable in L-band (delay resolution 200 ns). Table 3.4 lists 

the RMS-DS of the two path back-to-back test in C-band. The RMS-DS in C-band is 

approximately 49 ns, which is close to the analytical result. 
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Table 3.3. C-band back-to-back single-path RMS-DS statistics (ns), for data of 11 Feb 

2013, Rx 1 [78]. 

RMS-DS 

Statistics 

Multipath Threshold (dB) 

25 30 35 40 

Analytical 8.3 

Mean 9.7 10.0 10.2 10.4 

Median 9.7 9.9 10.2 10.4 

Max 9.8 10.3 10.5 10.7 

Min 9.5 9.7 10.0 10.1 

Standard 

deviation 
0.12 0.22 0.16 0.18 

 

 

Figure 3.29. Back to back laboratory 2-path test [8]. 

Table 3.4. C-band back-to-back 2-path RMS-DS statistics (ns), for both C-band receivers, 

data of 11 March 2013 (25 dB multipath threshold) [8]. 

RMS-DS Statistic Rx 1 Rx 2 

Analytical 49.0 49.0 

Measured 

Mean 48.7 49.0 

Median 48.7 49.0 

Max 52.0 51.5 

Min 42.8 46.3 

Standard 

deviation 
1.3 0.7 
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Figure 3.30. “Screen shot” of sounder IR in back-to-back testing; left: L-band, right: C-

band [8]. 

3.5 STATIONARITY DISTANCE 

The AG channel is statistically non-stationary beyond some time interval because 

of the relatively fast aircraft velocity and to a lesser degree because of moving scatterers. 

It is vital to determine the region of space over which the channel is wide sense 

stationary, or in other words the region over which channel statistics can be assumed 

constant. The stationarity distance is applied in the AG channel project for: (a) removing 

large scale path loss in order to evaluate small scale fading; (b) generating statistics of 

small scale fading over the SD; and (c) generating statistics of inter-receiver correlations 

over the SD. 

Aiming for cellular application in 1985, William Lee analytically investigated the 

necessary length over which the local average power is computed [79]. The author 
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assumed NLOS condition and Rayleigh fading. The distance over which large-scale 

fading (shadowing) effects could be assumed roughly constant was determined to be 20 

to 40 wavelengths. The number of samples in a local average window (20 to 40 

wavelengths) should be no smaller than 36. However, the AG channel almost always has 

LOS component and yields Ricean fading. Its SD has to be reconsidered. The local 

average window length over Ricean, Nakagami or Weibull distributed channels is hard to 

evaluate analytically since the power density function (PDF) of these distributions are 

much more complicated than that of Ricean. The SD for AG channel can also be studied 

via empirical data based methods: 

 Temporal PDP correlation coefficient (TPCC) [80] is a wideband method which 

could be based on single-input single-output (SISO) antennas or SIMO antennas 

if the PDPs at two separate antennas are very similar; 

 Correlation matrix distance (CMD) is a narrowband method based on multiple-

input multiple-output (MIMO) or SIMO systems which measures the spatial 

autocorrelation matrix change of the channel. CMD was used for V2V channels 

[59], [60], [81]. 

 Spectral divergence measures the distance between non-normalized positive 

spectral densities [82], [83], [84], [85]. 

 Shadow fading correlation [86] is the autocorrelation of shadowing. The 

decorrelation distance measures how fast the local environment changes to 

establish a stationarity distance. This traditional channel statistic is not 

recommended for the AG channel since in LOS channels, there is no shadowing 

by obstacles in the environment. 
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Based on the characteristics of both the AG channel and our channel sounder, we 

employed TPCC and CMD methods [64] and [58]. 

The TPCC begins with PDP given by 

𝑃𝐷𝑃(𝜏, 𝑡𝑖) = ∑ (𝛼𝑘,𝑖)
2

𝛿(𝜏 − 𝜏𝑘,𝑖)
𝐿𝑖
𝑘=1 ,     (3.5) 

where τ denotes delay, i denotes PDP index (corresponding to time or distance), Li is the 

number of chips in the i
th

 PDP, and αk,i denotes the received signal amplitude of the k
th

 

chip in the i
th

 PDP. The authors of [80] then average N instantaneous PDPs to smooth the 

small scale fading effects and remove equipment related variation 

𝑃𝐷𝑃𝑎𝑣𝑔,𝑁(𝜏, 𝑡𝑖) =
1

𝑁
∑ 𝑃(𝜏, 𝑡𝑖)

𝑖+𝑁−1
𝑖 .      (3.6) 

The averaging distance of 200λ (N can be determined by converting the 200λ value based 

upon the PDP update rate and aircraft velocity) was selected since the periodic variation 

of C-band received power caused by a slow relative sampling clock drift between Tx and 

Rx [70]. 

The TPCC is computed as follows: 

𝑐(∆𝑡, 𝑡𝑖) =
∫ 𝑃𝐷𝑃𝑎𝑣𝑔,𝑁(𝜏,𝑡𝑖)𝑃𝐷𝑃𝑎𝑣𝑔,𝑁(𝜏,𝑡𝑖+∆𝑡)𝑑𝜏

𝑚𝑎𝑥{∫[𝑃𝐷𝑃𝑎𝑣𝑔,𝑁(𝜏,𝑡𝑖)]
2

𝑑𝜏,∫[𝑃𝐷𝑃𝑎𝑣𝑔,𝑁(𝜏,𝑡𝑖+∆𝑡)]
2

𝑑𝜏}
.   (3.7) 

The coefficient quantifies the similarity of the average PDP between time ti and 

time ti+Δt. Coefficient c(Δt, ti) ranges between 0 and 1. Close to “1” means the channel 

changes very slowly or is quasi-stationary, and a smaller c(Δt, ti) means the channel is 

varying fast or is non-stationary. We select the SD value of distance Δx (corresponding to 

Δt and flight velocity v, Δx=v Δt) such that c(Δt, ti)>0.9. The very high probability 

threshold 0.9 is conservative, i.e., if c(Δt, ti)>0.9, then we have very high confidence that 

the channel is stationary within this distance. Example values of c(Δx, di) for C-band Rx1 
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of FT1 taken over the Pacific Ocean near Oxnard, CA are shown in Figure 3.31. The 

large variation of SD is due to the sampling clock drift. The statistics of SD Δx are listed 

in Table 3.5. The median value
4
 of SD for the over sea FT1 is approximately 15 m or 

250λ in C-band, which is much larger than 20λ to 40λ proposed by [79] for the terrestrial 

NLOS condition, and this is reasonable since an LOS component is always present in our 

AG channel (excepting perhaps in cases where airframe shadowing occurs—this is 

discussed in Chapter 5.3). The median SD values for other scenarios (urban, suburban, 

over freshwater, hilly and mountainous) ranged from 10 to 35 m. We found that the 

Ricean K-factor or inter-receiver correlation is not sensitive to small variation of SD. 

They only significantly vary when the SD changes by an order of magnitude or more. 

The 10 to 35 m SD yields almost the same K-factor and inter-receiver correlation results. 

The value 15 m SD is employed in estimations of Ricean K-factor and inter-receiver 

correlations. 

The L-band MPCs are unlikely resolvable in nearly all settings due to the small L-

band bandwidth of 5 MHz. The L-band SD is expected to be larger than the C-band SD 

since L-band has a physically longer wavelength, and channel changes occur at (some) 

rate proportional to wavelength. We hence conservatively use the 15 m as our L-band 

stationarity distance as well. 

                                                           
4
 Note that other authors who have estimated SD also come up with a range of values (e.g., for the V2V 

case [59], [60] and [81]). SD is not constant, but is actually a random variable itself. SD must be 

characterized statistically. 
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Figure 3.31. Contour of C-band TPCC vs. link distance d vs. Δx for segment of C-band 

Rx1 taken in FT1 in Oxnard, CA [58]. 

Table 3.5. C-band stationarity distance statistics, over-sea FT1 [58]. 

 

TPCC 

collinearity 

Rx1 Rx2 

Mean 
(m) 23.5 19.0 12.2 

(λ’s) 396.6 321.2 205.3 

Median 
(m) 15.2 14.4 6.4 

(λ’s) 256.1 242.0 108.4 

10
th

 percentile 
(m) 5.5 5.2 3.0 

(λ’s) 92.9 87.3 49.8 

Min 
(m) 0.97 0.91 1.1 

(‘λs) 16.4 15.4 19.0 

 

The second method to evaluate SD is the correlation matric distance [59]. CMD is 

between 0 and 1, with a smaller CMD meaning highly correlated and a larger CMD 

meaning uncorrelated. In order to be consistent with TPCC and the usual interpretation of 
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correlation, we calculate the collinearity=1-CMD [87], which also ranges from 0 

(uncorrelated) to 1 (highly correlated). The CIR hmn(,ti) is the response between the n
th

 

Tx antenna and the m
th

 Rx antenna m. Sample hmn(ti) is the narrowband complex channel 

response (complex gain) at time ti, which is a vectorially combined hmn(,ti) over the 

delay domain 

ℎ𝑚𝑛(𝑡𝑖) = ∑ 𝛼𝑘,𝑖𝑒
𝑗𝜙𝑘,𝑖

𝐿𝑖
𝑘=1 .       (3.8) 

Our channel sounder has 1×2 SIMO antennas. The vectorized Rx CIRs are 

𝒉(𝑡𝑖) = [
ℎ11(𝑡𝑖)
ℎ21(𝑡𝑖)

].        (3.9) 

Hence we can find the correlation matrix (at the Rx)  

𝑅(𝑡𝑖) =
1

𝑁
∑ 𝒉(𝑡𝑘)𝒉𝐻(𝑡𝑘)𝑖+𝑁−1

𝑘=𝑖       (3.10) 

where N denotes the number of narrowband channel responses used, which is set to be 

the same as that employed for the TPCC in (3.6), the superscript H is Hermitian 

transpose. Our metric is 

𝑐𝑜𝑙𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦(∆𝑡, 𝑡𝑖) = 1 − 𝑑𝑐(∆𝑡, 𝑡𝑖) =
𝑡𝑟{𝑅(𝑡𝑖)𝑅(𝑡𝑖+∆𝑡)}

‖𝑅(𝑡𝑖)‖𝐹‖𝑅(𝑡𝑖+∆𝑡 )‖𝐹
=

𝑡𝑟{𝑅(𝑡𝑖)𝑅(𝑡𝑖+∆𝑡)}

√𝑡𝑟[𝑅𝐻(𝑡𝑖)𝑅(𝑡𝑖)]𝑡𝑟[𝑅𝐻(𝑡𝑖+∆𝑡)𝑅(𝑡𝑖+∆𝑡)]
, 

           (3.11) 

where tr denotes matrix trace, and ||||F denotes the Frobenius norm.  

As with TPCC, SD is selected as the distance Δx (corresponding to Δt and flight 

velocity v, Δx=v Δt) such that collinearity(Δt,ti)>0.9. Again, the threshold 0.9 is 

conservative. The authors of [59] used 0.8 as their collinearity threshold. The threshold is 

sensitive to averaging window length N. Due to the sampling clock drift effect of our 

channel sounder, we employ a longer N (number of PDPs collected in 200λ in C-band 
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and 30λ in L-band) than that used in [59] of 25 consecutive PDPs, hence our threshold 

0.9 is relatively larger than the threshold of 0.8 employed in [59]. 

Figure 3.32 shows a contour of collinearity(Δt,ti) for the same FT1 as shown in 

Figure 3.31 for the TPCC. The statistics of collinearity(Δt,ti) are also provided in Table 

3.5. The median value 6.4 m is of the same order as the 15 m TPCC results. We have 

tried both values for our estimations of Ricean K-factor and inter-receiver correlation, 

and results with both values of SD are essentially the same. Therefore, the SD results 

from the collinearity and TPCC methods generally agree with each other. We chose 15 m 

as the stationarity distance for the AG channel data processing for both C-band and L-

band. 

 

Figure 3.32. Contour of collinearity vs. link distance d vs. Δx for segment of C-band Rx1 

taken in FT1 in Oxnard, CA [58].
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CHAPTER 4 

EARTH REFLECTION BASED DETERMINISTIC MODELS AND IMPROVEMENTS

A “two ray” model with the LOS component as one ray and the earth reflection as 

the other ray is a typical path loss model for several scenarios. As the GS antenna is 

elevated and the aircraft flies in the sky, a two-ray model is expected to fit the AG 

channel in many cases. We developed two earth reflection deterministic models based on 

flat earth and curved earth conditions, [88] and [89]. The curved earth two-ray model 

should be implemented for larger distances since it’s more accurate, whereas the flat 

earth two-ray is preferred for short distances for its simplicity. We also applied multiple 

modifications or improvements for the earth reflection deterministic models, including 

spherical earth divergence, atmospheric refraction and earth surface roughness. 

Corrections for surface roughness are applicable for both flat and curved earth cases, 

whereas the refractivity and divergence factors are only applied in the curved earth 

approximation. The detailed formulas, effects and discussion regarding these quantities 

are summarized in this chapter. Section 4.5 provides multiple boundaries for the CE2R 

model. 

4.1 FLAT EARTH TWO RAY 

The flat earth geometry is illustrated in Figure 4.1 [9]
5
. Variables hG and hA are 

the antenna heights of GS and aircraft, respectively, and d is the distance on the earth 

                                                           
5
 The development here only provides additional detail and comparison with the CE2R model, and does not 

describe anything new. 
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between the points directly beneath the aircraft and the GS. (Tacitly assumed is that the 

antenna dimensions are small relative to the heights.) The length of LOS path R1,k is 

expressed as 

𝑅1,𝑘 = √𝑑𝑘
2 + (ℎ𝐴,𝑘 − ℎ𝐺)2,       (4.1) 

with c the speed of light and subscript k indicates a time or distance index. The delay of 

the LOS component is 

𝜏0,𝑘 = 𝑅1,𝑘 𝑐⁄ .         (4.2) 

Via the Friis free-space transmission equation [90], we can find the LOS 

amplitude coefficient: 

𝛼0,𝑘 =
𝑐

4𝜋𝑓𝑐

1

𝑅1,𝑘
.        (4.3) 

The length of the reflected path R2,k is 

𝑅2,𝑘 = 𝑙1,𝑘 + 𝑙2,𝑘 = √𝑑𝑘
2 + (ℎ𝐴,𝑘 + ℎ𝐺)2 = √𝑅1,𝑘

2 + 4ℎ𝐴,𝑘ℎ𝐺 .  (4.4) 

Then, the delay of the earth surface reflection is 

𝜏𝑔,𝑘 = 𝑅2,𝑘 𝑐⁄ = √𝑅1,𝑘
2 + 4ℎ𝐴,𝑘ℎ𝐺 𝑐⁄ .      (4.5) 

The reflected component’s amplitude coefficient is 

𝛼𝑔,𝑘 =
𝑐

4𝜋𝑓𝑐

1

𝑅2,𝑘
,        (4.6) 

and  is the grazing angle 

𝜓𝑘 = tan−1(
ℎ𝐴,𝑘+ℎ𝐺

𝑑𝑘
) = tan−1(

ℎ𝐴,𝑘+ℎ𝐺

√𝑅1,𝑘
2 −(ℎ𝐴,𝑘−ℎ𝐺)2

).    (4.7) 

The elevation angle can be found as 

𝜃𝑒,𝑘 = sin−1(
ℎ𝐴,𝑘−ℎ𝐺

𝑅1,𝑘
),        (4.8) 
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and the phase delay between the LOS and the earth surface reflection is 

∆𝜙𝑘 =
2𝜋∆𝑅𝑘

𝜆
=

2𝜋𝑓𝑐(𝑅2,𝑘−𝑅1,𝑘)

𝑐
= 2𝜋𝑓𝑐(√𝑅1,𝑘

2 + 4ℎ𝐴,𝑘ℎ𝐺 − 𝑅1,𝑘)/𝑐  (4.9) 

From [91], we obtain the reflection coefficient for both vertical and horizontal 

polarizations (note that most aircraft will employ vertically polarized antennas) 

𝛤𝑣,𝑘,1 =
[𝜀𝑟−𝑗𝜎 (2𝜋𝑓𝑐𝜀0)⁄ ] 𝑠𝑖𝑛(𝜓𝑘)−√𝜀𝑟−𝑗𝜎 (2𝜋𝑓𝑐𝜀0)⁄ −𝑐𝑜𝑠2(𝜓𝑘)

[𝜀𝑟−𝑗𝜎 (2𝜋𝑓𝑐𝜀0)⁄ ] 𝑠𝑖𝑛(𝜓𝑘)+√𝜀𝑟−𝑗𝜎 (2𝜋𝑓𝑐𝜀0)⁄ −𝑐𝑜𝑠2(𝜓𝑘)
   (4.10) 

𝛤ℎ,𝑘,1 =
𝑠𝑖𝑛(𝜓𝑘)−√𝜀𝑟−𝑗𝜎 (2𝜋𝑓𝑐𝜀0)⁄ −𝑐𝑜𝑠2(𝜓𝑘)

𝑠𝑖𝑛(𝜓𝑘)+√𝜀𝑟−𝑗𝜎 (2𝜋𝑓𝑐𝜀0)⁄ −𝑐𝑜𝑠2(𝜓𝑘)
.     (4.11) 

where r is the dielectric constant or relative permittivity, 0 denotes the vacuum 

permittivity, which is approximately 8.85× 10
−12

 F/m, σ denotes the conductivity in S/m, 

and we assume that the reflection objects do not contain any magnetic materials (=0). 

Using these results, the CIR is expressed as 

ℎ2−𝑟𝑎𝑦(𝜏, 𝑘) = 𝛼0,𝑘δ(𝜏 − 𝜏0,𝑘) + 𝛼𝑔,𝑘𝑒−𝑗∆𝜙𝑘𝛤𝑘δ(𝜏 − 𝜏g,𝑘)   (4.12) 

For convenience, we can also normalize the LOS component amplitude to one, yielding 

ℎ2−𝑟𝑎𝑦
𝑁 (𝜏, 𝑘) = δ(𝜏 − 𝜏0,𝑘) + (𝛼𝑔,𝑘/𝛼0,𝑘)𝑒−𝑗∆𝜙𝑘𝛤𝑘δ(𝜏 − 𝜏g,𝑘).  (4.13) 

Some typical values of the electrical constants of the earth (permittivity εr, 

conductivity σ and permeability μr) are listed in Table 4.1 [9]. 

 

Figure 4.1. Geometry for flat-earth approximation. 
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Table 4.1. Typical values of ground electrical constants [9]. 

 

Conductivity σ 

(S/m) 

Dielectric constant 

εr 

Relative permeability 

μr 

Poor Ground (Dry) 0.001 4 - 7 1 

Average Ground 0.005 15 1 

Good Ground 

(Wet) 
0.02 25 - 30 1 

Sea water 5 81 1 

Fresh water 0.01 81 1 

 

4.2 CURVED EARTH TWO RAY 

The CE2R model is illustrated in Figure 4.2 [92]. Since aircraft can fly several 

hundred meters or even several kilometers above the ground, and the link distance can be 

up to 40 km in our measurements, the curved earth approximation is expected to fit the 

empirical data more accurately than the flat earth approximation. The computation of the 

curved earth case is more complex than that in the flat earth case. 

In Figure 4.2 point A denotes the aircraft, point B is the GS and point C denotes 

the earth center. The effective earth radius ka is used instead of the true earth radius to 

account for atmospheric refraction, where the atmospheric refractivity constant k is a 

function of altitude meteorological conditions; details regarding k are described in section 

4.3.2. The earth radius a is based on the equatorial radius ae, polar radius ap and latitude φ 

as  

𝑎 = √
(𝑎𝑒

2𝑐𝑜𝑠𝜑)2+(𝑎𝑝
2𝑠𝑖𝑛𝜑)2

(𝑎𝑒𝑐𝑜𝑠𝜑)2+(𝑎𝑝𝑠𝑖𝑛𝜑)2
,       (4.14) 

where the equatorial radius (semi-major axis) ae is 6378.137 km and polar radius (semi-

minor axis) ap is 6356.752 km [93]. The latitude φ of measurements sites in our AG 

channel measurement campaign ranged from 34.2º (Oxnard, CA) to 41.5º (Cleveland, 

OH), therefore the earth radius was between 6371.427 and 6368.795 km. 
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We proceed with analysis following [88], referring to Figure 4.2. First, angle 

qk=θ1,k+ θ2,k can be computed via the law of cosines with known the GS antenna height 

hG, the aircraft antenna height hA,k and the link distance R1,k 

𝑅1,𝑘
2 = (𝑘𝑎 + ℎ𝐴,𝑘)2 + (𝑘𝑎 + ℎ𝐺)2 − 2(𝑘𝑎 + ℎ𝐴,𝑘)(𝑘𝑎 + ℎ𝐺)cos (𝑞𝑘). (4.15) 

Then we compute Tx-Rx distance on the earth surface dk 

𝑑𝑘 = 𝑘𝑎𝑞𝑘,         (4.16) 

and then three necessary quantities [94]: 

𝑚𝑘 =
𝑑𝑘

2

4𝑘𝑎(ℎ𝐴,𝑘+ℎ𝐺)
        (4.17) 

𝑐𝑘 =
ℎ𝐴,𝑘−ℎ𝐺

ℎ𝐴,𝑘+ℎ𝐺
         (4.18) 

𝑏𝑘 = 2√
𝑚𝑘+1

3𝑚𝑘
cos {

𝜋

3
+

1

3
arccos [

3𝑐𝑘

2
√

3𝑚𝑘

(𝑚𝑘+1)2]}.    (4.19) 

Next we find the earth surface distances and angle 1,k 

𝑑1,𝑘 = 𝑑𝑘(1 + 𝑏𝑘)/2        (4.20) 

𝑑2,𝑘 = 𝑑𝑘 − 𝑑1,𝑘        (4.21) 

𝜃1,𝑘 = 𝑑1,𝑘/(𝑘𝑎)        (4.22) 

and grazing angle 

𝛹𝑘 =
ℎ𝐴,𝑘+ℎ𝐺

𝑑𝑘
[1 − 𝑚𝑘(1 + 𝑏𝑘

2)].      (4.23) 

Then we calculate the path length difference between the LOS and earth surface reflected 

components 

∆𝑅𝑘 = 2𝑑1,𝑘𝑑2,𝑘𝛹𝑘
2/𝑑𝑘,       (4.24) 

hence the path length of the earth surface reflection is 

𝑅2,𝑘 = 𝑅1,𝑘 + ∆𝑅𝑘,        (4.25) 
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with which we can find the phase delay between the LOS component and earth surface 

reflection Δϕk by (4.9), and the reflection coefficients Γk by (4.10) and (4.11). 

What remains is the elevation angle; for this we first compute the angle vk in 

Figure 4.2 

𝑣𝑘 =
𝜋

2
− 𝑞𝑘,         (4.26) 

and via the law of sines 

𝑝𝑘 =
(𝑘𝑎+ℎ𝐺)𝑠𝑖𝑛 (𝑞𝑘)

𝑠𝑖𝑛 (𝑣𝑘)
,        (4.27) 

then via the law of cosines the angle ϕk can be found 

(𝑘𝑎 + ℎ𝐺)2 = 𝑅1,𝑘
2 + (𝑘𝑎 + ℎ𝐴,𝑘)2 − 2𝑅1,𝑘(𝑘𝑎 + ℎ𝐴,𝑘)cos (𝜙𝑘),  (4.28) 

and the angle βk can be computed via the law of sines, 

𝛽𝑘 = 𝑠𝑖𝑛−1[
𝑅1,𝑘sin (𝜙𝑘)

𝑝𝑘
],       (4.29) 

then the elevation angle θe,k for CE2R is 

𝜃𝑒,𝑘 = 𝜋 − 𝜙𝑘 − 𝛽𝑘.        (4.30) 

Finally the 2-ray CIR follows by employing these in (4.12) or (4.13). Comparison of the 

CE2R, FE2R and example empirical (measured) L-band path loss is shown in Figure 4.3, 

in which the empirical data is a data segment of flight track 2 taken at Oxnard, CA with 

link distance from 5 to 45 km. The CE2R model fits the measurements better than the 

FE2R does. The CE2R and FE2R models have almost the same two lobe magnitude 

values, but their phases are significantly different. 
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Figure 4.2. Geometry for curved-earth approximations (modified from [92]). 
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Figure 4.3. CE2R and FE2R model fits for empirical path loss vs. distance. 

4.3 IMPROVEMENTS FOR THE EARTH REFLECTION DETERMINISTIC 

MODELS 

4.3.1 SPHERICAL EARTH DIVERGENCE 

The signals reflected by a spherical surface will spatially diverge. The energy lost 

due to the divergence increases as the distance increases, and as hA, hG and the radius of 

the sphere decrease. The reflection divergence factor Dk is always between zero and one, 

and this factor will multiply the surface reflection amplitude in (4.12) or (4.13). Via the 

law of cosines, as shown in Figure 4.2, the lengths between the reflection point and the 

aircraft l1,k, and the GS, l2,k, are 
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𝑙1,𝑘
2 = (𝑘𝑎 + ℎ𝐴,𝑘)2 + (𝑘𝑎)2 − 2(𝑘𝑎)(𝑘𝑎 + ℎ𝐴,𝑘)cos (𝜃1,𝑘),   (4.31) 

𝑙2,𝑘 = 𝑅2,𝑘 − 𝑙1,𝑘.        (4.32) 

The reflection divergence factor is then given by [88] 

𝐷𝑘 = [1 +
2

𝑘𝑎𝑠𝑖𝑛(𝛹𝑘)

𝑙1,𝑘𝑙2,𝑘

𝑙1,𝑘+𝑙2,𝑘
]−1/2.      (4.33) 

The adjusted reflection coefficient Γk,2 is Γk,1 by (4.10) or (4.11) in CE2R model 

Γ𝑘,2 = 𝐷𝑘Γ𝑘,1.         (4.34) 

The reflection divergence factor for one of our actual flight tracks is shown in 

Figure 4.4. In this over ocean FT taken near Oxnard, CA, the GS altitude was 20 m, the 

aircraft altitude ranged from 796 to 804 m, and the Tx-Rx distance was between 1 and 45 

km. The divergence factor decreased with link distance, and was between 0.99 and 1, 

hence for most of our applications we can approximate Dk as one. 

 

Figure 4.4. Divergence factor versus link distance, over Sea FT2. 
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4.3.2 ATMOSPHERIC REFRACTION 

The propagating electromagnetic wave deviates from a straight line path as it 

passes through the atmosphere, and this physical phenomenon is termed atmospheric 

refraction. It is due to the electromagnetic wave velocity through air increasing with 

deceased air density as a function of altitude. As shown in Figure 4.5, the electromagnetic 

wave actually propagates longer than would a straight line path between Tx and Rx so 

that a refractivity coefficient needs to be applied to estimate the true path distance. 

 

Figure 4.5. Illustration of atmosphere refraction. 

The atmospheric refractivity can be expressed as 

𝑁 = (𝑛 − 1) × 106 =
77.6

𝑇
(𝑝 + 4810

𝑒

𝑇
),     (4.35) 

where n is the refractive index, p is the total pressure in millibars, e is the partial pressure 

of water vapor in millibars, and T is the absolute temperature in degrees Kelvin. Pressure 

typically decreases exponentially with altitude, and the same is true for the refractive 

index. This has led to the definition of the atmospheric refractivity N in terms of “N-

units”, and the Recommendation ITU-R P.834-5 [95] and the Consultative Committee on 

International Radio (CCIR) employ the following approximation: 
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𝑁(ℎ) = 315 × 𝑒−0.136ℎ       (4.36) 

where height h is expressed in kilometers. Refractive coefficient k is defined as 

𝑘 =
1

1+𝑎×10−6𝑑𝑁

𝑑ℎ

        (4.37) 

where a denotes the earth radius in km. An alternative (linear) approximation to (4.36) is 

dN/dh=-39 N-units/km under standard atmospheric conditions. 

The relation between altitude h and refractive coefficient k is shown in Figure 4.6. 

The refractivity coefficient approximation of 4/3, as the red line in Figure 4.6, is widely 

used for near earth surface communication systems. It is based on the mean value over 

the first kilometer of atmosphere in a temperate climate. However, for the AG channel, 

the aircraft altitude can be much larger than 1 km. In our data processing, the refractivity 

coefficient is a variable dependent on the mean altitude value between the GS and aircraft 

(hA+hG)/2. 

 

Figure 4.6. Refractivity coefficient k vs. altitude h. 
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As illustrated in Figure 4.7 and Table 4.2, positive values of dN/dh yield 

refractive coefficient k values from 0 to 1, and the effective radius in CE2R is smaller 

than the true earth radius a, causing the radio wave to propagate away from the horizon 

(bent upward). A zero dN/dh value indicates a constant refractivity versus altitude or an 

effective radius equal to a. Negative values of dN/dh yield k larger than one, hence the 

radio wave propagates towards the horizon (bent downward). If dN/dh is equal to -157 N-

units/km, k becomes infinite, hence the effective radius becomes infinite and no bending 

occurs at all. When dN/dh is smaller than -157 N-units/km, the refractive coefficient k 

becomes a negative value. This non-standard condition is termed ducting”, which will be 

described in subsection 4.4.3. 

 

Figure 4.7. Diagram of refraction mechanisms. 
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Table 4.2. Refraction condition summary. 

dN/dh k Effective radius Bending 

0 < dN/dh 0 < k < 1 < a upward 

dN/dh = 0 k = 1 = a 
same curvature as 

earth surface 

-157 < dN/dh < 0 1 < k > a downward 

dN/dh = -157 k = ±∞ = ±∞ straight 

dN/dh < -157 k < 0 < 0 downward, trapping 

 

4.3.3 SURFACE ROUGHNESS 

When the earth is smooth, the reflection will be specular, and when rough enough, 

the signals will be scattered instead of reflected. In other words, the reflected signals are 

dispersed into multiple directions. In this case, the energy that propagates to the receiver 

can be significantly less than that estimated via g and . Roughness is dependent on 

wavelength . The roughness of the ground can be estimated by geographic information, 

and for water surfaces roughness can be estimated by wind speed [91]. 

The surface reflection coefficient magnitude is affected by the surface roughness, 

in which surface elevation is most often modeled as a Gaussian random variable with 

standard deviation h. Then, just as for divergence, the smooth surface reflection 

coefficient magnitude |0| is modified by multiplication of the roughness factor. For 

water, this roughness factor is computed using the Miller-Brown surface roughness 

model [96]: 

Γ𝑘,3 = Γ𝑘,2𝑒−2(2𝜋𝑔)2
𝐼0[2(2𝜋𝑔)2],      (4.38) 

where I0 is the first-kind zero-order modified Bessel function, and g is given by 

𝑔 = 𝜎ℎ sin(𝛹𝑘) /𝜆,        (4.39) 

where 𝛹𝑘 denotes the grazing angle. For a water surface reflection, h is related to wind 

speed according to the Philips’ saturation curve spectrum [97] 
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𝜎ℎ = 0.0051𝑢2,        (4.40) 

where u is wind speed in meters per second. 

We extend results of Figure 4.3 to Figure 4.8 to show the effects of rough sea 

surface with multiple wind speed values. Comparisons of sea surface reflection 

coefficient magnitude in both L- and C-band are shown in Figures 4.9 and 4.10; the 

comparisons include CE2R and FE2R, with/without divergence factor applied, and with 

different wind speeds. As discussed, the magnitude of the reflection coefficient and two 

ray lobes are noticeably affected by the wind speed. 

 

Figure 4.8. Path loss vs. distance showing the effects of rough sea surface. 
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Figure 4.9. Magnitude of reflection coefficient vs. distance in L-band for various 

conditions. 

 

Figure 4.10. Magnitude of reflection coefficient vs. distance in C-band for various 

conditions. 
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4.4 FURTHER CONSIDERATIONS FOR AG PROPAGATION 

The radio wave propagating in the AG channel is affected or occasionally 

influenced by some additional effects, including rain attenuation, atmospheric gaseous 

attenuation, ducting and foliage attenuation. Since our AG channel measurements were 

conducted in clear weather and with high elevated GS antennas, no hydrometeor effects 

or foliage attenuation were present. Ducting was not observed in our experimental data as 

well. In this section these effects will be briefly described. 

4.4.1 ATMOSPHERIC GAS EFFECTS 

The radio wave energy can be absorbed by water-vapor, oxygen and nitrogen. 

This atmospheric attenuation is a function of frequency, air pressure, temperature and 

water-vapor density. Experimental results and models are provided by Recommendation 

ITU-R P.676-10 [98]. The gaseous attenuation near sea level is approximately 0.03 

dB/km at 1 GHz and 0.04 dB/km at 5 GHz, with air pressure 1013 hPa, temperature 15 

ºC and water-vapor density of 7.5 g/m. The gaseous attenuation caused by water-vapor is 

much smaller than that caused by dry air (oxygen and nitrogen) at frequencies smaller 

than 10 GHz. Therefore the gaseous attenuation for all measured AG scenarios is unlikely 

larger than 0.03 dB/km at 1 GHz and 0.04 dB/km at 5 GHz as the pressure and water-

vapor density for other settings are both smaller than those at sea level, moreover, the 

gaseous attenuation decreases as the altitude increases [99] hence the AG channel at other 

GS altitudes has smaller gaseous attenuation than at sea level. The AG channel 

propagation path is no larger than 45 km in our measurement campaign, so the gaseous 

attenuation is smaller than 1.8 dB. The gas attenuation is not applied in our CR2R 



www.manaraa.com

86 
 

deterministic model, but it should be considered if the propagation length is large (e.g., 

100 km link distance yields a gas attenuation of 4 dB in C-band and 3 dB in L-band). 

4.4.2 HYDROMETEOR ATTENUATION 

In the previous subsection the water in gaseous state was considered. Water in 

liquid and solid states, in the form of fog, clouds, ice, snow, rain, and so on, may also 

affect the path loss. Water in nongaseous state in the atmosphere is generally termed 

“hydrometeors”. Solid water (ice and snow) absorb much less electromagnetic energy at 

microwave frequencies than does liquid water. The sizes of liquid water particles in 

clouds and fog are very small (radius usually smaller than 100 μm), so the attenuation at 

frequencies smaller than 10 GHz is negligible. The attenuation due to clouds and fog for 

frequencies higher than 10 GHz is reported in Recommendation ITU-R P. 840-6 [100]. 

Rain is the most significant factor in radio wave propagation among all kinds of 

hydrometeors. Rain attenuation increases with frequency as well as with the rainfall rate. 

Based upon the prediction methods and parameters provided by Recommendation ITU-R 

P.838-3 [101], the authors of [99] generate rain attenuation versus frequency and selected 

rain rates. The rain attenuation at 5 GHz is approximately 0.01 dB/km for a rainfall rate 

of 10 mm/hour (light rain) and is 0.4 dB/km for a rainfall rate of 100 mm/hour (strong 

thunderstorm). The rain attenuation at 1 GHz is much smaller than 0.01 dB/km, and is 

hence negligible for all but the longest links. 

4.4.3 DUCTING 

Ducting is an atmospheric effect that only occurs in anomalous conditions in 

which the atmospheric refractivity decreases unusually rapidly as the altitude increases. 

Ducts can be viewed as leaky waveguides, and as such, the signal power enhancements 
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caused by ducts can be utilized by near surface communication systems. Ducts can also 

have strong impact on radar systems [102]. As mentioned in subsection 4.3.2 and 

equation (4.37), the refractive coefficient k becomes negative when dN/dh<-157 N-

units/km, yielding a downward bending of the radio wave, and this is termed a duct. 

Ducts only occur in some specific altitude ranges. As the red curve shows in Figure 4.7, 

the radio wave in the duct is bent toward the earth surface. If the surface is smooth 

enough, the bent radio wave is reflected, and it propagates and curves back to the earth 

surface again. The “trapping” phenomenon of bending and specular reflections acts as 

waveguide. 

Ducts can be classified into three categories: 1) evaporation duct; 2) surface based 

duct; and 3) elevated duct [99], [103]. Evaporation ducts occur over water with height 

ranging from 0 to 40 m above the surface, with an average duct height of 13 m worldwide 

[104], [105], [106]. The evaporation duct formation is due to the extremely rapid 

moisture decrease near the water surface. Evaporation ducts are nearly permanent and 

only affect frequencies above approximately 2 GHz. 

The surface-based duct extends down to the earth surface with worldwide average 

thickness of 85 m. It only occurs from 1% to 46 % (worldwide average 8%) of the time 

and is independent of frequency. The elevated duct occurs in an altitude range that is 

above the earth surface. The worldwide bottom height of elevated ducts ranges from 600 

to 1500 m with duct thickness of a few hundred meters. Elevated ducts are caused by the 

rapid advection between a dry, warm air layer above a moist, cool air layer. The elevated 

duct plays an essential role for radar systems and is usually considered independent of 

frequency. The yearly average occurrence, strength and thickness of surface-based and 
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elevated ducts and the bottom height of the elevated duct for different locations in the 

world are provided in Recommendation ITU-R P.453-10 [107]. 

The authors of [108] and [109] hypothesized the presence of ducts based on 

empirical AG channel testing conducted over the South China Sea at 5.7 GHz. The 

aircraft altitude was 0.37, 0.91 and 1.83 km and the GS antenna heights were 2.1 and 7.65 

m. The average signal power enhancement caused by a combination of evaporation duct 

and elevated duct was 0.11 dB/km. The variation of the enhancement was modeled as a 

Gaussian with standard deviation of 0.01 dB/km. 

Ducting can be modeled by ray-tracing method, but doing so requires knowledge 

of the local refractivity index variation as a function of altitude, which is unavailable for 

our AG measurements. Again, based upon the empirical path loss collected in our AG 

measurements campaign, no ducting was observed. 

4.5  BOUNDARIES FOR CURVED EARTH MODEL 

4.5.1 BOUNDARY OF VALID GRAZING ANGLE 

The CE2R cannot be used if the link range is so long that diffraction phenomena 

become preponderant [88]. This maximum link range limitation is expressed by the 

minimum grazing angle, 

𝛹𝑘,𝑚𝑖𝑛 = (2100/𝑓𝐶)1/3,       (4.41) 

where the minimum grazing angle 𝛹𝑘,𝑚𝑖𝑛 is in milliradians and fC is the center frequency 

in MHz [94]. The value of  𝛹𝑘,𝑚𝑖𝑛 is approximately 0.074 degrees for 968 MHz and 

0.043 degrees for 5060 MHz. 

The grazing angle cannot exceed a maximum value of 𝛹𝑘,𝑚𝑎𝑥 = π/2 radians. 

Approximations are introduced by three intermediate quantities mk, ck and bk in equations 
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(4.17)-(4.19). The grazing angle estimated by these quantities can be larger than π/2 at 

short distances, which is of course incorrect, and this can cause some incorrect results. 

Hence the maximum grazing angle has to be limited to π/2. 

From eq. (4.23) and (4.19) the grazing angle is given by 

𝜓𝑘 =
ℎ𝐴,𝑘+ℎ𝐺

𝑑𝑘

4𝑘𝑎(ℎ𝐴,𝑘+ℎ𝐺)−𝑑𝑘
2(1+𝑏𝑘

2)

4𝑘𝑎(ℎ𝐴,𝑘+ℎ𝐺)
=

4𝑘𝑎(ℎ𝐴,𝑘+ℎ𝐺)−𝑑𝑘
2(1+𝑏𝑘

2)

4𝑘𝑎𝑑𝑘
.  (4.42) 

Since bk is always between 0 and 1, 1 + 𝑏𝑘
2 < 2. For short distances where dk is only up 

to a few hundred meters, 𝑑𝑘
2(1 + 𝑏𝑘

2) ≪ 4𝑘𝑎(ℎ𝐴,𝑘 + ℎ𝐺), or 𝑑𝑘
2 ≪ 2𝑘𝑎(ℎ𝐴,𝑘 + ℎ𝐺). 

(Note that even for very small values of hA,k and hG, e.g., hA,k+hG~20 m, and k~1, since 

a~6380 km, the inequality generally holds very well, e.g., the left side is less than 1/100
th

 

the right side for these parameters with dk<1.1 km). Using the limit of 𝛹𝑘,𝑚𝑖𝑛, the grazing 

angle limitation for CE2R is  

(
2100

𝑓𝑀𝐻𝑧
)

1

3
(𝑚𝑟𝑎𝑑) < 𝜓𝑘 <

𝜋

2
,        (4.43) 

where the upper limit is simply based upon geometry (a grazing angle larger than /2 

implies that the propagation geometry changes and/or propagation direction also changes, 

in which geometric parameters should be re-defined). Then we have for “short” distances 

𝜓𝑘 ≅
4𝑘𝑎(ℎ𝐴,𝑘+ℎ𝐺)

4𝑘𝑎𝑑𝑘
=

ℎ𝐴,𝑘+ℎ𝐺

𝑑𝑘
<

𝜋

2
.      (4.44) 

Thus for our “short” link distance condition, the great circle path distance dk limit 

for use of the CE2R model is 

2

𝜋
(ℎ𝐴,𝑘 + ℎ𝐺) < 𝑑𝑘 <

ℎ𝐴,𝑘+ℎ𝐺

(
2100

𝑓𝑀𝐻𝑧
)

1
3

(𝑚𝑟𝑎𝑑)

.      (4.45) 

The maximum and minimum horizontal distance dk for multiple values of GS and 

aircraft height are shown in Figures 4.11, 4.12 and 4.13, respectively. In our AG channel 



www.manaraa.com

90 
 

measurement campaign, the GS height was 20 m, the aircraft height was always larger 

510 m and the link range was less than 50 km. We never reached the minimum grazing 

angle (maximum dk). The minimum dk values shown in Figure 4.13 are always outside 

the half power main beam of the GS antennas where the PDPs are removed in the data 

processing. Therefore, all the PDPs we used in our channel modeling satisfy eq. (4.45). 

 

Figure 4.11. GS height and aircraft height vs. maximum horizontal distance for CE2R at 

5060 MHz, based on the minimum grazing angle, ha denotes aircraft height. 
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Figure 4.12. GS height and aircraft height vs. maximum horizontal distance for CE2R at 

968 MHz, based on the minimum grazing angle, ha denotes aircraft height. 

 

Figure 4.13. GS height and aircraft height minimum horizontal distance for CE2R, based 

on the maximum grazing angle, ha denotes aircraft height. 
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4.5.2 BOUNDARY OF RESOLVABLE CE2R 

The delay resolution of the 50 MHz bandwidth C-band channel sounder is 20 ns. 

The LOS and earth surface reflection are resolvable at small distances. Since the path 

length difference between the two rays (LOS and surface reflection) decreases as the link 

distance increases, beyond a specific value of distance, the two rays lie in the same 20 ns 

delay bin and are hence unresolvable by the sounder. The resolvable boundary, as a 

function of the AC height, the GS antenna height and link distance, is shown in Figure 

4.14. The GS antenna height was 20 m (red line) in the measurement campaign and the 

AC height of the over sea data collected in Oxnard, CA was approximately 800 m. The 

50 MHz C-band two rays were unresolvable when the link distance was larger than 5.38 

km. 

 

Figure 4.14. CE2R resolvable boundary for 50 MHz bandwidth. 
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The L-band sounder bandwidth is 5 MHz, yielding delay resolution of 200 ns. 

The two rays are always unresolvable with the GS antenna lower than 30 m. The 

bandwidth can be in effect converted to smaller values by combining adjacent chips 

within a PDP, e.g., 1 MHz in C-band or 200 kHz in L-band. With the 20 m GS antenna 

height, any of the 1 MHz or 200 kHz bandwidths do not allow the LOS and earth surface 

reflection to be resolvable. 

4.5.3 BOUNDARY OF BEYOND LOS 

As the aircraft may fly far away from the GS, the LOS can be blocked by the 

earth, and this condition is termed beyond line of sight (b-LOS). The boundaries of the b-

LOS region for multiple GS antenna heights are shown in Figure 4.15. The LOS was 

never blocked by the smooth earth surface in our AG channel project (as the Tx-Rx 

distance was no larger than 45 km). 

 

Figure 4.15. Boundary of beyond LOS. 
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4.5.4 BOUNDARY OF NEGATIVE ELEVATION ANGLE 

Another interesting condition for the curved earth air-ground radio propagation 

path is that the elevation angle may be equal to or even smaller than zero. Since the AC 

antennas are likely mounted on the bottom of the fuselage, the LOS may be blocked by 

the aircraft itself when the elevation angle is negative. The boundary of negative 

elevation angle is shown in Figure 4.16. The elevation angle becomes negative when the 

link distance and aircraft height values are on the lower right of the curves. The elevation 

angle was always positive in our AG channel measurement campaign. 

 

Figure 4.16. Boundary of zero elevation angle in curved earth model. 
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CHAPTER 5 

NARROWBAND AG CHANNEL MODELS

Narrowband models estimate the attenuation (sometimes also phase) caused by 

the radio propagation channels. The term narrowband is in contrast to wideband, which 

quantifies delay dispersion or multipath in the channels. Specifically, a narrowband 

channel is one in which the transfer function can be considered to have constant gain and 

linear phase over bandwidth; in this sense narrowband is synonymous with distortionless. 

In the limit, this corresponds to the transfer function at a single frequency6. 

Narrowband AG channel models can be viewed as being composed of large scale 

path loss, small scale fading and airframe shadowing, as illustrated in Figure 5.1. Note 

that order of processing in Figure 5.1 is immaterial; this results from the assumed 

independence of the physical effects causing each of the three phenomena. The large 

scale path loss is described by a log-distance path loss model [90] and/or the CE2R 

model. Small scale fading is characterized by Ricean K factors since the LOS component 

is almost always present in the AG channel. The LOS component can be obstructed by 

the aircraft itself during some specific maneuvers. The airframe shadowing depth and 

duration are quantitatively investigated. Methods to reproduce the airframe shadowing 

attenuation are proposed. 

                                                           
6
 For channels modeled statistically, using the classical formulation of Bello [110], for wide-sense 

stationary uncorrelated scattering (WSSUS) conditions, a narrowband channel is one in which the transfer 

function is considered only for frequency spans much less than the channel coherence bandwidth. This 

yields the constant-gain, linear-phase condition. 
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Figure 5.1. Narrowband AG Channel Models. 

5.1 LARGE SCALE PATH LOSS MODEL 

As described in Section 4.4, extra atmospheric attenuation can be caused by 

hydrometeors and atmospheric gases. Ducts can enhance the received signal strength. 

However, no precipitation occurred during our measurements and no ducting effects were 

observed from our data. Since these effects can be incorporated using standard techniques 

[101], we do not address them further. The empirical path loss PL(R) in dB, as a function 

of link range R, is computed from the received power Pr(R) and parameters of the 

measurement setup, 

𝑃𝐿(𝑅) = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 𝐺𝐻𝑃𝐴 + 𝐺𝐿𝑁𝐴 − 𝐿𝐶 − 𝑃𝑟(𝑅),   (5.1) 

where Pt denotes transmitted power in dBm; Gt, Gr, GHPA, GLNA denote gains in dBi of the 

transmitter antenna, receiver antenna, high-power amplifier, and low noise amplifier, 

respectively; and LC is the cable loss. Parameters Pt, GHPA, GLNA and LC are provided in 

Table 3.2; the Gt and Gr values are shown in Figures 3.15, 3.16 and 3.19, which are 

dynamically based on instantaneous elevation angle and azimuth angle. 

Example results for the over sea setting are shown in Figures 5.2 and 5.3, along 

with free space path loss, and CE2R and FE2R model results. Two-ray lobes can be 

clearly observed from the measured path loss, particularly for the L-band results. 
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Figure 5.2. C-band path loss vs. link distance for over sea environment [58]. 

 

Figure 5.3. L-band path loss vs. link distance for over sea environment [58]. 
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The log-distance path loss model form is one of the most widely used models to 

quantify large scale attenuation caused by the radio propagation channel [90]. The classic 

log-distance path loss model is as follows, 

𝑃𝐿(𝑅) = 𝐴0 + 10𝑛𝑙𝑜𝑔10(𝑅 𝑅𝑚𝑖𝑛⁄ ) + 𝑋     (5.2) 

where A0 denotes the path loss in dB at the minimum link distance Rmin, n is the 

(dimensionless) path loss exponent, X denotes a zero-mean Gaussian random variable 

with standard deviation σX dB. In order to improve accuracy, we proposed a correction 

for our log-distance model, which adds another term to (5.2) to yield, 

𝑃𝐿(𝑅) = 𝐴0 + 10𝑛𝑙𝑜𝑔10(𝑅 𝑅𝑚𝑖𝑛⁄ ) + 𝜁𝐹 + 𝑋,             𝑅𝑚𝑖𝑛 ≤ 𝑅 ≤ 𝑅𝑚𝑎𝑥 (5.3) 

where variable ζ=-1 denotes that the aircraft is flying toward the GS, ζ=+1 denotes flying 

away from the GS, and F is the (positive) adjustment factor in dB for different flight 

directions. The path loss difference between attenuations recorded for flights in different 

directions is likely due to the aircraft pitch angle, which affects the aircraft antenna gain; 

moderate airframe shadowing may also contribute. Multiple corrections for the two-ray 

models are also applied, specifically, 

𝑃𝐿(𝑅) = 𝐶𝐸2𝑅(𝑅) + 𝐵 + 𝜁𝐹 − 20 𝑙𝑜𝑔10[𝑎(𝑅)],        𝜓𝑚𝑖𝑛 < 𝜓 <
𝜋

2
 (5.4) 

where CE2R(R) denotes the path loss estimated by the CE2R model described in Section 

4.2; B denotes the overall bias between the CE2R model and the measured path loss; a(R) 

is a memoryless (unfiltered) Ricean fading random variable, whose parameters are 

estimated in Section 5.2; the minimum grazing angle ψmin(mrad) is (2100/fMHz)
1/3

 as 

described in Section 4.5.1. Note that the B’s and F’s do differ for different GS 

environments as well as for different elevation angles. 
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The measured path loss, and log-distance and CE2R path loss model results for 

the over sea environment are shown in Figures 5.4 and 5.5, which include measured path 

loss for two flight tracks (one flew straight toward the GS and the other flew away from 

the GS) with two Rxs in each FT. The free space path loss model results are also plotted 

in Figures 5.4 and 5.5. The path loss model parameters are listed in Table 5.1. The 

standard deviations are 2.6 dB and 4.2 dB, for C-band and L-band, respectively, which 

indicates that the log-distance model fits the measured data very well. Typical standard 

deviations for terrestrial cellular log-distance path loss models range from 3-12 dB [90], 

so our AG channel path loss model accuracy is quite good. The larger standard deviation 

in L-band than C-band is because L-band yields larger 2-ray attenuation peaks—this is 

because the water surface is more reflective at L-band, and the surface reflection 

cancellation of the LOS component is stronger. The path loss models for the over 

freshwater environment are shown in Figures 5.6 and 5.7. The path loss difference at 

short distance between different flight directions is due to aircraft antenna effects. 
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Figure 5.4. C-band path loss models for over sea environment taken in Oxnard, CA on 

6/11/2013. 

 

Figure 5.5. L-band path loss models for over sea environment taken in Oxnard, CA on 

6/11/2013. 
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Table 5.1. Parameters of log-distance and CE2R path loss models. 

Setting 
Sea, Oxnard 

6/11/2013 

Fresh, 

Cleveland 

10/22/2013 

Aggregate 

suburban, 

Palmdale, 

Latrobe and 

Cleveland 

Hilly, Palmdale 

6/12/2013 

Band 
C-

band 

L-

band 

C-

band 

L-

band 

C-

band 

L-

band 

C-

band 

L-

band 

Log-

distanc

e 

A0 (dB) 116.7 100.7 116.3 104.4 116.7 98.2 123.9 106.5 

n 1.5 1.9 1.9 1.9 1.5 1.7 1.0 1.3 

σX (dB) 2.6 4.2 3.1 3.8 2.9 3.1 2.2 3.9 

Xmax(dB) 9.0 18.5 9.1 13.3 10.4 16.5 6.8 17.8 

F (dB) 0.8 1.0 1.8 1.4 0.0 1.1 0.9 0.7 

CE2R B (dB) -1.1 1.1 -0.3 1.6 -0.5 1.8 -1.0 1.8 

Distanc

e range 

Rmin 

(km) 
2.6 2.2 3.0 3.0 2.6 1.3 5.4 2.8 

Rmax 

(km) 
24.1 24.1 28.1 28.1 16.9 16.9 21.0 21.0 

 

 

Figure 5.6. C-band path loss models for over freshwater environment taken in Cleveland, 

OH on 10/22/2013. 



www.manaraa.com

102 
 

 

Figure 5.7. L-band path loss models for over freshwater environment taken in Cleveland, 

OH on 10/22/2013. 

The CE2R model also fits some suburban and hilly terrain settings. Whether or 

not the CE2R (or FE2R) model can be applied does not depend on the terrain condition 

(flat and smooth or not) of the entire FT, but depends on the local terrain condition 

surrounding the “reflection point” at the distance we term the “Q radius” from the GS. As 

illustrated in Figure 5.8
7
, we assume the earth surface reflection point is Q m away from 

the GS. Based on a “similar triangles” relation, Q is given by 

𝑄

𝑑−𝑄
=

ℎ𝐺

ℎ𝐴
,         (5.5) 

hence 

𝑄 =
𝑑ℎ𝐺

ℎ𝐴+ℎ𝐺
,         (5.6) 

                                                           
7
 Although Figure 5.8 shows a flat earth surface case, the relation in eq. (5.5) is still true for the curved 

earth case since the grazing angles ψ on the left and right sides of the reflection point are the same. Figure 

5.8 is illustrated as flat earth for simplicity. 
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where d denotes the horizontal distance in meters between the GS and the aircraft, and hG 

and hA denote heights of the GS and the aircraft, respectively. Although the aircraft flies 

over hills or buildings, the local terrain surrounding the reflection point Q m from the GS 

can still be flat
8
, such that CE2R (or FE2R) is applicable. 

 

Figure 5.8. Diagram of earth surface reflection point. 

Since the GS was located at an airport or on flat ground for the hilly and suburban 

data sets taken in Palmdale and Latrobe, and the ground near the GS is very flat without 

large obstacles (neither natural nor man-made), the ground reflection is strong and the 

CE2R model is appropriate. Some example results are shown in Figures 5.9 to 5.12. The 

path loss models parameters for hilly and suburban environments are listed in Table 5.1. 

We have three sets of data for suburban environments. The aggregate results are reported 

in Table 5.1. 

                                                           
8
 Since the received signal is affected by energy inside multiple Fresnel zones, the signals reflected over an 

area of the surface (the “reflection area” indicated by the small green region in Figure 5.8) can reach the 

receivers. Therefore, the actual reflection area (green region) within which the ground is flat and relatively 

smooth must be considered for a strong specular surface reflection, and CE2R or FE2R validity. For most 

geometries, the dimension of the reflection area (green region) is small relative to distance Q. 
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Figure 5.9. C-band path loss models for suburban environment taken in Latrobe, PA on 

4/15/2013. 

 

Figure 5.10. L-band path loss models for suburban environment taken in Latrobe, PA on 

4/15/2013. 
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Figure 5.11. L-band path loss models for suburban environment taken in Palmdale, CA 

on 6/12/2013. 

 

Figure 5.12. L-band path loss models for hilly environment taken in Palmdale, CA on 

6/12/2013. 
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For the other two major environment types, mountainous and near-urban, the 

CE2R model will not fit well. In the near-urban case, a harbor with many boats and many 

large buildings were near the GS right beneath the flight track in the near-urban 

environment of Cleveland, OH. Large mountain ridges were near the GS for the 

mountainous data taken in Telluride, CO. These large obstacles tend to scatter the ground 

reflection, so that no prominent two-ray lobes were observed in these environments. The 

path loss is modeled by the log-distance model only. The parameters are provided in 

Table 5.2. Example measured path loss and log-distance model results are shown in 

Figures 5.13 to 5.16. Again, the standard deviations are smaller than 3.5 dB, indicating 

that the log-distance models agree with the measured data very well. 

Table 5.2. Parameters of log-distance path loss models. 

Setting 
Near-urban, Cleveland 

10/22/2013 

Mountainous, Telluride 

9/12/2013 

Band C-band L-band C-band L-band 

Log-distance 

A0 (dB) 110.4 99.4 119.7 102.7 

n 2.0 1.7 1.7 1.6 

σX (dB) 3.2 2.6 2.8 3.5 

Xmax(dB) 14.1 17.8 7.6 13.0 

F (dB) 2.3 1.8 4.5 4.8 

Distance range 
Rmin (km) 1.7 1.6 3.4 1.8 

Rmax (km) 19.0 19.0 19.4 19.4 
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Figure 5.13. C-band path loss models for near-urban environment taken in Cleveland, OH 

on 10/22/2013. 

 

Figure 5.14. L-band path loss models for near-urban environment taken in Cleveland, OH 

on 10/22/2013. 
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Figure 5.15. C-band path loss models for mountainous environment taken in Telluride, 

CO on 9/12/2013. 

 

Figure 5.16. L-band path loss models for mountainous environment taken in Telluride, 

CO on 9/12/2013. 
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Figure 5.17. Potential ground reflection points in Telluride regional airport. 

As shown in Figure 5.16, the L-band path loss results taken in Telluride, CO 

appear to contain 2-ray lobes beyond approximately 8 km. The potential ground 

reflection points in the Telluride regional airport where the GS was located are illustrated 

in Figure 5.17. A segment of flat runway provides the flat and smooth area for the earth 

surface reflection. The 2-ray lobes were only present in a segment of the flight track. 

They vanished beyond approximately 25 km because the reflection points moved to the 

left outside the yellow circle in Figure 5.17 (no longer on the flat runway, but in the 

rough valley), where the earth surface reflection is scattered, and the geometry of 2-ray 

model is totally changed. The geometry of the flight route where the 2-ray lobes appear 

correspond to the reflection area defined approximately by the yellow region indicated in 
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Figure 5.17. Therefore, although CE2R is not expected to fit the path loss in mountainous 

terrain, it can still work for some small segments. 

5.2 SMALL SCALE FADING 

The small scale fading is the received signal amplitude fast variation due to 

multipath, which is usually treated statistically. The small scale fading can be studied by 

use multiple statistics, such as the received envelope distribution, level crossing rate 

(LCR) and average fade duration (AFD) [6]. The received envelope distribution is the 

most typical method used for characterization. Along with temporal characteristics, this 

completely specifies the small-scale fading. The received signal amplitude follows a 

Ricean distribution in the LOS condition, and it follows a Rayleigh distribution in the 

NLOS condition. The Ricean degenerates to the Rayleigh when the Ricean K factor is 

very small. The fading can also be modeled by Nakagami and Weibull distributions. Each 

of these distributions has a parameter (for all distributions, we assume unity average 

energy, as is common practice). The Nakagami m factor larger than 1 can be viewed as a 

Ricean condition. The Weibull β factor larger than 2 is similar. A Weibull  value 

smaller than 2 or a Nakagami m<1 indicates that the fading is worse than Rayleigh. Since 

the LOS component is almost always present in the AG channel, the Ricean distribution 

is employed in our investigation. 

The probability density function of a Ricean random variable is given by [6] 

𝑝(𝑥) =
𝑥

𝜎2 exp (−
𝑥2+𝑠2

2𝜎2 )𝐼0(
𝑥𝑠

𝜎2),      (5.7) 

where I0(·) is the zero
th

 order modified Bessel function of the first kind, x denotes the 

amplitude of the received signal, s
2
 is the power of the LOS component and 2σ

2
 denotes 

the power of the diffuse components. The definition of K factor in decibels is 
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𝐾 = 10𝑙𝑜𝑔10(
𝑠2

2𝜎2
).        (5.8) 

Large K values imply the LOS component is much stronger than the diffuse components 

(from scatterers). A K smaller than 0 dB indicates the energy in the LOS component is 

comparable to or smaller than that from the scatterers. 

5.2.1 RICEAN K-FACTOR ESTIMATION ALGORITHM 

In order to estimate the small scale fading, the effects of the large scale path loss 

and/or shadowing should be removed in advance of processing. In our case, the received 

signal is normalized to the local average power in dB 

𝑃𝑟,𝑚𝑜𝑣(𝑅) = ∑
𝑃𝑟 (𝑅𝑖)

𝑊

𝑖+𝑊/2
𝑖−𝑊/2 ,       (5.9) 

where W is a moving average window length, which is the number of PDPs within our 

SD of 15 m. With PDP update rate of approximately 3 kHz and flight velocity of 60-90 

m/s, W is approximately 50-75 PDPs. Then the fading amplitude in linear scale is given 

by 

𝐹(𝑅) = 10
[𝑃𝑟(𝑅)−𝑃𝑟,𝑚𝑜𝑣(𝑅)]

20 .       (5.10) 

Then we make the fading amplitude unit-energy, as is standard practice, which yields 

𝐹𝑁(𝑅) = √𝐹2(𝑅)/𝐹2(𝑅)̅̅ ̅̅ ̅̅ ̅̅ ,       (5.11) 

where 𝐹2(𝑅)̅̅ ̅̅ ̅̅ ̅̅  is the mean of 𝐹2(𝑅) over length W. FN(R) is a real positive vector with 

length W that has unit-energy
9
. 

                                                           
9
 The a(R) in eq. (5.4) is also a real positive vector with unit energy. Vectors a(R) and FN(R) are similar but 

have two differences: 1) FN(R) is generated by measured data, but a(R) is generated by a theoretical method 

for computer analysis or simulations; 2) the length of these two vectors may not be equal. The length of 

a(R) is the number of PDPs for the entire flight track if a single K factor value is employed, and it can be as 

small as W if a distance dependent K factor vector is used. 
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The Ricean K factor was estimated for the measured FN(R) data via two methods: 

1) the maximum likelihood (ML) fit of the measured data FN(R) to a Ricean pdf via a 

Matlab® built-in function (the fit probability distribution object to data, “fitdist” in 

“Statistics Toolbox”); and 2) a moment based (MB) method. Based on the fourth order 

moment based method [111], the K factor in decibels is computed by 

𝐾𝑀𝐵 = 10𝑙𝑜𝑔10(
−2𝜇2

2+𝜇4−𝜇2√2𝜇2
2−𝜇4

𝜇2
2−𝜇4

),     (5.12) 

where μ2 is the second order moment of FN(R), and μ4 is the fourth order moment of 

FN(R), 

𝜇2 =
1

𝑊
∑ [𝐹𝑁(𝑅𝑖)]2𝑖+𝑊/2

𝑖−𝑊/2 ,       (5.13) 

𝜇4 =
1

𝑊
∑ [𝐹𝑁(𝑅𝑖)]4𝑖+𝑊/2

𝑖−𝑊/2 .       (5.14) 

5.2.2 EXAMPLE K-FACTOR RESULTS 

An example set of AG channel K factors for the over sea environment FT1 are 

shown in Figures 5.18 to 5.21. These results are for both bands and all receivers. The 

results based on the ML and MB methods essentially agree with each other. A linear fit 

for K factor in decibels versus link distance R in km is given by [112] 

𝐾(𝑅) = 𝐾0 + 𝑛𝐾(𝑅 − 𝑅𝑚𝑖𝑛) + 𝑌,      (5.15) 

where K0 is a constant at the minimum link distance Rmin, nK denotes the slope, and Y 

denotes a zero mean Gaussian random variable with standard deviation σY. The slope nK 

is sometimes positive and sometimes negative in different FTs and environments. The 

magnitude of nK is on the order of one tenth or less. Thus K(R) K0 + Y provides a very 

good approximation [58]. For the simplest approximation one can employ a constant K 

factor K(R) K0. The L-band K factor results are a strong function of the 2-ray channel, 
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and to a lesser degree, a function of the intermittent multipath. Example K factors versus 

link distance for small distance segments--1 km range and 100 m range--for both bands, 

are shown in Figures 5.22 to 5.25. The statistics and linear fit parameters are provided in 

Table 5.3. 

 

Figure 5.18. Ricean K factor vs. link distance for over sea environment FT1, C-band Rx1 

[64]. 
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Figure 5.19. Ricean K factor vs. link distance for over sea environment FT1, C-band Rx2. 

 

Figure 5.20. Ricean K factor vs. link distance for over sea environment FT1, L-band Rx1 

[64]. 
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Figure 5.21. Ricean K factor vs. link distance for over sea environment FT1, L-band Rx2. 

 

Figure 5.22. Ricean K factor vs. link distance for over sea environment FT1, C-band Rx1; 

segment of Figure 5.18 from 10 to 11 km. 
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Figure 5.23. Ricean K factor vs. link distance for over sea environment FT1, C-band Rx1; 

segment of Figure 5.18 from 10 to 10.1 km. 

 

Figure 5.24. Ricean K factor vs. link distance for over sea environment FT1, L-band Rx1; 

segment of Figure 5.20 from 10 to 11 km. 
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Figure 5.25. Ricean K factor vs. link distance for over sea environment FT1, L-band Rx1; 

segment of Figure 5.20 from 10 to 10.1 km. 

Table 5.3. Statistics of Ricean K factor for over sea environment FT1. 

Oxnard, CA 11 June 2013 Over Sea, FT1 flew straight toward the GS 

Ricean K factor 
C-band L-band 

Rx1 Rx2 Rx1 Rx2 

Methods KML KMB KML KMB KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 29.1 29.0 29.0 29.0 12.0 11.8 12.1 11.9 

nK 0.17 0.17 0.12 0.12 0.07 0.08 0.07 0.08 

σY (dB) 1.7 1.7 1.5 1.5 1.0 1.0 0.9 0.9 

Rmax(km) 3.0 3.0 3.0 3.0 2.2 2.2 2.2 2.2 

RMin(km) 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 

Statistics of K factor 

(dB) 

Max 35.5 35.4 34.0 34.0 20.2 20.4 19.7 19.9 

Min 22.7 22.7 23.3 23.3 10.3 10.0 10.6 10.4 

Median 31.3 31.3 30.6 30.6 12.9 12.8 12.9 12.8 

μ 31.7 31.6 30.9 30.9 12.7 12.6 12.8 12.6 

σ 2.0 2.0 1.7 1.6 1.1 1.1 1.0 1.0 

 

The K factors of all the straight FTs for the over sea environment were combined 

together, and the aggregate statistics and K factor fit results are provided in Table 5.4. 
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The aggregate K factors for over freshwater, near-urban, suburban, hilly and mountainous 

environments are listed in Tables 5.5 to 5.9, respectively. The K factors do not change 

much over different environments. This is due to the predominance of the LOS 

component in our AG channels in all GS local environments; the diffuse components are 

sparse and relatively weak. The Ricean K factor is on average 28.7 dB in C-band and 

13.1 dB in L-band for all the GS local environments. 

Table 5.4. Statistics of aggregate Ricean K factor for over sea environment [58]. 

Oxnard, CA 11 June 2013 Over Sea, all straight FTs 

Ricean K factor C-band L-band 

Methods KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 29.9 28.5 11.7 11.5 

nK 0.08 0.12 0.08 0.08 

σY (dB) 1.7 1.8 1.1 1.1 

Rmax(km) 2.6 2.6 2.2 2.2 

RMin(km) 24.1 24.1 24.1 24.1 

Statistics of K factor (dB) 

Max 35.6 35.6 20.7 22.1 

Min 11.1 11.8 9.4 7.8 

Median 31.0 30.3 12.7 12.7 

μ 31.3 30.5 12.5 12.5 

σ 1.8 1.9 1.2 1.3 

 

Table 5.5. Statistics of aggregate Ricean K factor for over freshwater environment. 

Cleveland, OH 22 October 2013 Over Lake Erie, all straight FTs (FT2&3) 

Ricean K factor C-band L-band 

Methods KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 25.5 25.5 12.8 12.7 

n 0.10 0.10 0.01 0.03 

σX (dB) 1.7 1.7 1.5 1.3 

Rmax(km) 2.5 2.5 2.0 2.0 

RMin(km) 28.1 28.1 28.1 28.1 

Statistics of K factor (dB) 

Max 33.0 33.0 16.5 16.6 

Min 12.4 12.8 8.7 7.3 

Median 27.0 27.0 12.9 13.1 

μ 27.3 27.3 12.8 13.1 

σ 1.8 1.8 1.5 1.3 
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Table 5.6. Statistics of aggregate Ricean K factor for near-urban environment. 

Cleveland, OH 22 October 2013 near-urban, all straight FTs (FT5&6) 

Ricean K factor C-band L-band 

Methods KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 26.0 26.0 13.0 13.0 

nK 0.12 0.12 -0.10 -0.11 

σY (dB) 1.6 1.6 2.3 2.2 

Rmax(km) 1.9 1.9 1.7 1.7 

RMin(km) 19.0 19.0 19.0 19.0 

Statistics of K factor (dB) 

Max 33.7 33.7 14.7 14.9 

Min 12.3 12.7 -86.2 -23.5 

Median 27.4 27.4 12.0 11.9 

μ 27.5 27.5 12.4 12.5 

σ 1.8 1.7 2.3 2.3 

 

Table 5.7. Statistics of aggregate Ricean K factor for suburban environment. 

Latrobe, PA 15 April 2013 Suburban, all straight FTs (FT1, 2, 3, 4 & 5) 

Ricean K factor C-band L-band 

Methods KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 27.6 27.6 12.5 12.2 

nK 0.09 0.09 0.10 0.11 

σY (dB) 2.3 2.3 1.1 1.2 

Rmax(km) 1.7 1.7 0.9 0.9 

RMin(km) 41.4 41.4 41.4 41.4 

Statistics of K factor (dB) 

Max 40.2 40.2 20.5 20.4 

Min 7.9 6.9 6.5 5.2 

Median 28.7 28.7 13.8 13.6 

μ 28.6 28.6 13.7 13.4 

σ 2.4 2.4 1.5 1.6 
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Table 5.8. Statistics of aggregate Ricean K factor for hilly environment. 

Palmdale, CA 12 June 2013 Hilly, all straight FTs (FT6, 7, 8 & 9) 

Ricean K factor C-band L-band 

Methods KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 29.6 29.6 11.8 11.5 

nK 0.00 0.00 0.07 0.07 

σY (dB) 2.1 2.1 1.3 1.4 

Rmax(km) 5.2 5.2 2.7 2.7 

RMin(km) 23.8 23.8 23.8 23.8 

Statistics of K factor (dB) 

Max 35.7 35.8 23.2 23.2 

Min 12.3 12.8 9.3 -6.3 

Median 29.6 29.6 12.6 12.3 

μ 29.8 29.8 12.3 12.1 

σ 2.1 2.1 1.3 1.4 

 

Table 5.9. Statistics of aggregate Ricean K factor for mountainous environment. 

Telluride, CO 12 Sept. 2013 Mountainous, all straight FTs (FT2, 3, 4, 8 & 9) 

Ricean K factor C-band L-band 

Methods KML KMB KML KMB 

Linear fit of K factor 

K0(dB) 29.8 29.8 12.4 12.0 

nK -0.02 -0.02 0.06 0.06 

σY (dB) 2.3 2.2 1.0 1.6 

Rmax(km) 3.4 3.4 1.9 1.9 

RMin(km) 47.5 47.5 47.5 47.5 

Statistics of K factor (dB) 

Max 40.5 40.5 16.6 16.7 

Min 12.8 13.2 5.1 -3.0 

Median 29.4 29.4 13.8 13.4 

μ 29.4 29.4 13.8 13.5 

σ 2.3 2.3 1.3 1.8 

 

5.2.3 K-FACTOR IN AIRFRAME SHADOWING 

The LOS component was obstructed in airframe shadowing events, where the 

aircraft roll angle is large enough that the wings or engines block the LOS between 

aircraft antennas and GS antennas. The small scale fading decreases during this 

shadowing. Example L-band K factor results in an airframe shadowing event that 

occurred over Lake Erie are shown in Figure 5.26 [113]. The K factor is approximately 

15 dB outside the shadowing area, and dropped to below -20 dB in the shadowing area. 
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Since the C-band received power was below the receiver’s noise floor for part of the C-

band shadowing event, the C-band K factor is not reliable during this airframe shadowing 

event. 

 

Figure 5.26. Ricean K factor in airframe shadowing area, over Lake Erie FT4 L-band Rxs 

[113]. 

5.3 AIRFRAME SHADOWING 

5.3.1 EXAMPLE AIRFRAME SHADOWING RESULTS 

An example airframe shadowing (AFS) event collected over Lake Erie was 

provided in [113]. Another example AFS event is presented in this section, for data that 

was collected over the Mojave Desert near Palmdale, CA. The flight route and the area 

where AFS event occurred in Google Earth® are shown in Figure 5.27, and the flight 

route in ECEF coordinates is plotted in Figure 5.28. Two AFS events occurred when the 

aircraft was making “U-turns”. The definition of aircraft roll angle is illustrated in Figure 
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5.29. The positive roll angle denotes that the left wing is higher than the right wing. The 

roll angle of the measurement airplane is plotted in Figure 5.30. 

We analyze the circled area where the example AFS event occurred. The 

maximum roll angle was 26.9º in this AFS event. The elevation angle was approximately 

5.2º. The link distance between the aircraft and the GS in the circled area was between 

20.5 and 22.2 km. The aircraft velocity was approximately 100 m/s. The heights of 

aircraft and GS antennas were 1925 and 20 m above the ground, respectively. The PDP 

update rate was approximately 2660 PDPs per second for each of our four receivers. 

 

Figure 5.27. Flight route of FT11 in Palmdale, CA on 12 June 2013 in Google Earth®. 
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Figure 5.28. Flight route of FT11 in Palmdale, CA on 12 June 2013 in ECEF coordinates. 

 

Figure 5.29. Definition of aircraft roll angle [113]. 
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Figure 5.30. Roll angle of FT11 in Palmdale, CA on 12 June 2013. 

Airframe shadowing occurrs when the LOS component is blocked by part of the 

aircraft (in our case, wings or engines). It requires not only a large roll angle, but also the 

flight direction (heading) must differs from the azimuth angle, i.e., the difference between 

the heading angle and azimuth angle ∠HA should be large enough. The angle ∠HA versus 

measured time is shown in Figure 5.31. 

Three criteria are employed to determine start and stop positions of an airframe 

shadowing event: 

a) Roll angle larger than 5º, as indicated in the red segments in Figure 5.30; 

b) Angle ∠HA larger than 30º, as shown by the red region in Figure 5.31; 
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Figure 5.31. Difference between aircraft heading and azimuth angles, FT11 in Palmdale, 

CA on 12 June 2013. 

c) Measured received power Pr at least 5 dB
10

 smaller than the 

received power estimated by the log-distance path loss model. 

The measured received power Pr in the AFS area for two C-band Rxs are shown in 

Figure 5.32. The cumulative distribution functions (CDFs) of Pr in AFS area are plotted 

in Figure 5.33. The shadowing duration for the two C-band receivers are 52.4 and 48.9 s. 

The maximum shadowing losses are 33.9 and 33 dB. Note that the noise level of our C-

band receivers with 0.0005 false alarm probability (see Section 3.3.3) is approximately -

80 dBm. Some Pr values below the noise level might be overestimated. Therefore, the 

maximum shadowing loss could be larger than 33.9 and 33 dB. 

                                                           
10 

The measured received power has small fluctuations up to a few decibels. The 5 dB value was chosen as 

a compromise: it is small enough to ensure inclusion of a large number of PDPs in AFS events to enable 

accurate statistical estimates, and large enough to avoid “false starts” or “false stops” of AFS events from 

the signal fluctuation. Similarly, the 5º roll angle and 30º ∠HA thresholds are also engineering judgements. 
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Figure 5.32. C-band airframe shadowing depth and duration, Palmdale, CA 12 June 2013 

FT11, C1 & C2 denote C-band Rx1 and Rx2 respectively. 

 

Figure 5.33. CDF of C-band shadowing depth, Palmdale, CA 12 June 2013 FT11. 
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The measured Pr vs. time results for the L-band receivers during the AFS event 

are plotted in Figure 5.34, and their CDFs are shown in Figure 5.35. The maximum 

shadowing losses are 43.4 and 25.7 dB, and the shadowing durations are 36.3 and 33.2 s 

for the two receivers. The CDFs of Pr in the AFS area were fit by Gaussian distributions. 

The Gaussian parameters and statistics of this example AFS event for all four receivers 

are listed in Table 5.10. 

 

Figure 5.34. L-band airframe shadowing depth and duration, Palmdale, CA 12 June 2013 

FT11, L1 & L2 denote L-band Rx1 and Rx2 respectively. 
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Figure 5.35. CDF of L-band shadowing depth, Palmdale, CA 12 June 2013 FT11. 

Table 5.10. Statistics of airframe shadowing depth and duration, Palmdale, CA 12 June 

2013 FT11. 

 

C-band L-band 

Rx1 Rx2 Rx1 Rx2 

Shadow Duration (s) 52.4 48.9 36.3 33.2 

Shadow Loss 

(dB) 

Max 33.9 33.0 43.3 25.7 

Min 1.8 0.0 0.0 0.0 

Mean 15.1 11.6 12.7 7.1 

Median 13.2 9.1 12.9 6.6 

Standard 

Deviation 
8.2 7.9 5.1 3.4 

Link Distance 

(km) 

Max 22.2 22.2 22.2 22.2 

Min 20.1 20.5 21.1 21.3 

Max Roll Angle (degree) 26.9 

Elevation Angle (degree) 5.2 

 

The C-band sequence of PDPs in the AFS event is shown in Figure 5.36. The big 

null in the middle near 500 s is caused by the wing shadowing. 
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Figure 5.36. Sequence of C-band PDPs in airframe shadowing area, Palmdale, CA 12 

June 2013 FT11. 

The magnitude of received power difference between two intra-band receivers is 

termed instantaneous diversity gain. This “instantaneous” measure in a sense represents 

the maximum attainable selection diversity against shadowing, applicable for our specific 

aircraft and antenna locations. The diversity gains versus time for both bands are shown 

in Figure 5.37. The channel responses of the two Rxs are essentially the same outside the 

AFS area, as the diversity gain is typically smaller than 5 dB. However, the diversity gain 

is up to 20 dB in L-band and 16 dB in C-band in the AFS area. Multiple aircraft antennas 

could significantly mitigate the airframe shadowing, even in this case where all antennas 

are on the same side of the aircraft. The diversity gain is expected to increase if two 

aircraft antennas are mounted further away, e.g., at the end of two wings or one under the 

cockpit and the other under the tail or on the top. In [46], the authors experimentally 
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analyzed the diversity gain provided by multiple GS antennas (a few meters separation 

distance), and found this almost useless to mitigate the airframe shadowing. 

 

Figure 5.37. Aircraft antenna diversity gain in airframe shadowing area, Palmdale, CA 12 

June 2013 FT11. 

5.3.2 AIRFRAME SHADOWING MODELS 

NASA Glenn Research Center has collected 58 AFS events in our measurement 

campaign. Since we have two receivers in each band, 111 C-band and 98 L-band 

shadowing events
11

 are available for generating statistics of shadowing duration and 

depth. In this section we provide the statistics of AFS depth and duration. 

The histogram of shadowing durations for C-band and L-band are plotted in 

Figures 5.38 and 5.39, respectively. The histograms are fitted by truncated Gaussian 

                                                           
11

 Numbers of C-band (111) and L-band (98) shadowing events are smaller than twice 58 because 1) some 

receivers were not functioning during some FTs; and 2) when AFS occurred on one receiver, it may not 

have occurred on all other receivers. All the 209 AFS events have been checked by the three criteria 

described in Section 5.3.1. 
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distributions. In these figures, μ denotes mean and std denotes standard deviation. The 

term “truncated” means that all non-positive values generated by the Gaussian fit should 

be ignored—we do not fit modified pdfs to the histograms simply because the probability 

of negative durations is small enough so that ignoring these should be inconsequential. 

The average shadowing duration is 35 s in C-band and 25.5 s in L-band. The duration 

depends on aircraft flight velocity and maneuver. The flight velocity was between 60 to 

100 m/s, which is relatively slow for typical commercial airplanes; our velocity was 

intentionally slow in order to record as many PDPs as possible in our measurements. 

Hence the shadowing duration in practical flight actions is expected to be shorter than 

what we report in Figures 5.38 and 5.39. The C-band shadowing duration is on average 

10 seconds longer than the L-band duration. This is because the C-band signal at shorter 

wavelength than L-band incurs an electrically larger obstruction, i.e., the size of the 

aircraft wings is relatively larger in C-band. 

 

Figure 5.38. Histogram of C-band airframe shadowing duration. 
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Figure 5.39. Histogram of L-band airframe shadowing duration. 

The shadowing loss is modeled based upon the median values for each AFS 

event. The maximum and mean shadowing loss are strongly affected by fading, and C-

band maximum and mean shadowing loss are further influenced by the Rx’s noise level. 

We also checked the 90
th

 and 70
th

 percentiles shadowing loss values, which are also 

affected by the C-band Rx’s noise level. Therefore, the median values provide a fairly 

reliable estimation of shadowing loss. The histograms of median shadowing loss for C-

band and L-band are shown in Figures 5.40 and 5.41, respectively. Their CDFs are 

plotted in Figure 5.42. The histograms are fit by truncated Gaussian distributions, for 

simplicity. The median shadowing loss is on average 15.5 dB in C-band and 10.8 dB in 

L-band. The C-band shadowing loss is approximately 5 dB larger than the L-band loss. 

Again, this is due to the relatively larger size of the aircraft wing in C-band than in L-

band. 
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Figure 5.40. Histogram of median shadowing loss in C-band. 

 

Figure 5.41. Histogram of median shadowing loss in L-band. 
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Figure 5.42. CDF of median shadowing loss. 

The maximum shadowing loss in L-band is plotted in Figure 5.43. Gaussian, 

Generalized Extreme Value (GEV) and Weibull fits found by the Matlab® function 

distribution fitting tool “dfittool” via the maximum likelihood criteria are also shown in 

Figure 5.43, where “beta” denotes the Weibull β factor. The GEV fit the measured data 

the best. The C-band maximum shadowing loss is sometimes underestimated by the noise 

floor, so we do not provide C-band maximum shadowing loss statistics. 
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Figure 5.43. Histogram of maximum shadowing loss in L-band. 

The median shadowing loss versus roll angle is shown in Figure 5.44. (Note that 

these results are specific to the S-3B aircraft, but should translate to other aircraft of 

similar size.) A linear fit was found to describe the relationship between the median 

shadowing loss S and Roll angle Roll in degrees as 

𝑆(𝑅𝑜𝑙𝑙) = 𝐴𝑆.𝑅𝑜𝑙𝑙 + 𝑛𝑆,𝑅𝑜𝑙𝑙(𝑅𝑜𝑙𝑙 − 𝑅𝑜𝑙𝑙𝑚𝑖𝑛) + 𝑋𝑆,𝑅𝑜𝑙𝑙,   (5.16) 

where AS,Roll denotes the reference shadowing loss at the minimum roll angle Rollmin, 

nS,Roll denotes the slope, and XS,Roll denotes a zero-mean random variable with standard 

deviation of σX,S,Roll. The linear fit parameters are provided in Tables 5.11, and these fits 

can be interpreted as pertaining to aircraft similar in size to the S-3B, with antennas on 

the bottom. The shadowing loss increases as the maximum magnitude of roll angle 

increases, as expected. The C-band shadowing loss increases faster than L-band loss with 
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roll angle. The joint PDF of maximum roll angle vs. median shadowing loss for both 

bands are shown in Figures 5.45 and 5.46. 

 

Figure 5.44. Median shadowing loss vs. maximum roll angles. 

Table 5.11. Parameters of linear fits for median shadowing loss vs. roll angle. 
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Figure 5.45. C-band joint PDF of median shadowing loss vs. maximum roll angle. 

 

Figure 5.46. L-band joint PDF of median shadowing loss vs. maximum roll angle. 
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The median shadowing loss versus duration is shown in Figure 5.47. The L-band 

maximum shadowing loss versus duration is shown in Figure 5.48. A linear fit was found 

to describe the relationship between the shadowing loss S and shadowing duration D in 

seconds, 

𝑆(𝐷) = 𝐴𝑆,𝐷 + 𝑛𝑆,𝐷(𝐷 − 𝐷𝑚𝑖𝑛) + 𝑋𝑆,𝐷,     (5.17) 

where AS,D denotes the reference shadowing loss at the minimum shadowing duration 

Dmin, nS,D denotes the slope and XS,D denotes a zero-mean random variable with standard 

deviation of σX,S,D. The linear fit parameters are provided in Table 5.12. The median 

shadowing loss is not strongly correlated with shadowing duration, which may be 

somewhat unexpected. The L-band maximum shadowing loss though does increase with 

duration, yet the standard deviation of the fit to maximum L-band loss is quite large, 

hence the linear relationship is not very accurate. The joint PDFs of shadowing loss and 

shadowing duration for both bands are shown in Figures 5.49 to 5.51. 

Table 5.12. Parameters of linear fits for shadowing loss vs. duration. 

Shadowing loss vs. duration 

 
Max Loss Median Loss 

L-band C-band 

nS,D 0.24 0.03 -0.03 

AS,D 31 10.1 16.3 

σX,S,D 6.3 3.0 4.8 

Min Duration Dmin 4.6 4.6 4.9 

Max Duration 69.1 69.1 71.9 
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Figure 5.47. Median shadowing loss vs. duration. 

 

Figure 5.48. L-band maximum shadowing loss vs. duration. 
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Figure 4.49. C-band joint PDF of median shadowing loss vs. duration. 

 

Figure 4.50. L-band joint PDF of median shadowing loss vs. duration. 
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Figure 4.51. L-band joint PDF of maximum shadowing loss vs. duration. 

5.3.3 SIMULATING AIRFRAME SHADOWING 

We model shadowing loss as a function of time because aircraft maneuvers that 

cause shadowing do not depend upon link range R. The narrowband total path loss LT(t) 

accounts for both large scale path loss and wing shadowing loss, which can be modeled 

as follows, 

𝐿𝑇(𝑡) = 𝑃𝐿(𝑡) + 𝐿𝑆(𝑡),       (5.18) 

where LS(t) denotes shadowing loss over time, LT(t) and path loss PL(t) over time can be 

converted to functions of link range LT(R) and PL(R) by, 
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dependent, but the time variation of these parameters is generally slow. Since the 

elevation angle was only a few degrees in our measurements and the vertical velocity was 

negligible, (5.19) can be reduced to a two dimensional approximation in the horizontal 

plane as 

𝑅 ≅ 𝑣𝑡𝑐𝑜𝑠 (∠𝐻𝐴),        (5.20) 

where v denotes the combined or horizontal velocity. The relationship between link range 

R and time t should be considered three dimensionally when parameters (elevation angle 

and vertical velocity) in the vertical plane are significant. The path loss PL(t) in eq. (5.18) 

can be obtained from PL(R) via (5.3) or (5.4) outside the AFS region. The path loss 

PL(R) is only the first two terms in eq. (5.3) inside the AFS region. The third terms in 

(5.3) and (5.4) are the direction adjustments ζF, which are not applied in the AFS region, 

since the magnitude of direction angle |∠HA| is between 30º and 150º, hence the flight 

direction is neither straight toward nor straight away from the GS. The fourth terms in 

(5.3) and (5.4) account for small scale (faster) variation, which should not be employed 

during shadowing since the fading characteristics in the AFS are different--fading in the 

AFS is considered separately. 

The airframe shadowing loss LS(t) is given by, 

𝐿𝑆(𝑡) = 𝑆𝑓(𝑡) − 20𝑙𝑜𝑔10[𝑎(𝑡)],      (5.21) 

where S denotes the magnitude of wing shadowing loss, which is a random variable, but 

is constant for each AFS event; a(t) denotes a Ricean fading random variable with K=0 

dB (other options are also applicable); and f(t) denotes a shape function (maximum of 1) 

versus percentage of the shadowing event duration, which is a cubic spline interpolation 

as shown in Figure 5.52. This function is a least squares third-order polynomial fit which 
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passes through three control points (ti, f(ti)){(0,0), (0.5,1), (1,0)}. The cubic spline 

interpolation is given by f(t) to yield [114], 

𝑓(𝑡) = 𝑎𝑖(𝑡 − 𝑡𝑖)
3 + 𝑏𝑖(𝑡 − 𝑡𝑖)

2 + 𝑐𝑖(𝑡 − 𝑡𝑖) + 𝑑𝑖.    (5.22) 

where ai, bi, ci and di are coefficients defined by control points (ti, f(ti)). 

 

Figure 5.52. Shadowing shape function vs. shadowing duration percentage. 
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modified to work in a loop wherein the required variables are generated sequentially. We 

also allow for multiple (J) shadowing events per simulation, and assume no overlapping 

shadowing events. The algorithm can also be modified to “merge” overlapping 

shadowing events if desired.  

The path loss plus shadowing simulation is implemented as follows: 

1. Define a time vector t=[t0, t1, t2,…, ti-1, ti, ti+1,…, tN]. Actual values of t are 

arbitrary, but generally the m
th

 time increment tm=tm-tm-1 between any two time values 

(any m{1, 2, …N}) is a constant t for all m—this is our assumption here. If desired, 

values of t can be converted to link range R or symbol units as previously described. For 

a given flight path, this conversion yields a corresponding range vector R=[R0, R1, R2,…, 

Ri-1, Ri, Ri+1,…, RN]. 

2. Compute PL(t) according to the desired model (log-distance or CE2R). This 

yields the vector PL=[PL0, PL1, PL2,…, PLi-1, PLi, PLi+1,…, PLN]. 

3. Select the number of shadowing events J. Then select the J airframe shadowing 

start times tx,j  [t0, tN), j{1, 2, …, j, …, k, …, J}. These can be drawn according to any 

desired distribution over the flight duration (if any of these random start times are 

identical, e.g., tx,j=ty,k for any x≠y, re-draw these repeated random start times tx,j so that all 

start times are distinct). 

4. Select the J shadowing depth random variables Dj from the appropriate 

Gaussian distribution of Figures 5.38 or 5.39. If any shadowing events overlap (tx,j ty,k 

tx+Dj,j, for y>x), re-draw either the start time or duration random variables to remove 

overlaps. 
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5. From a distribution specified by Figures 5.40 and 5.41, generate the median 

airframe shadowing magnitudes Sj in dB. (An alternative is to generate a roll angle 

dependent shadowing loss Sj(Roll) according to (5.16). This would require specification 

of a roll vector vs. time. 

6. For each of the J shadowing events, from shape function f(t) specified by 

Figure 5.52 and (5.22), and the shadowing loss magnitudes Sj generated by step 5, set the 

instantaneous shadowing loss sample values within the shadowing events as 𝑆𝑗𝑓(
𝑡𝑖−𝑡𝑥,𝑗

𝐷𝑗
). 

Note that the instantaneous shadowing loss is 5 dB at the start and stop points ti=tx,j and 

ti=tx,j+Dj since our measured shadowing loss starts and stops at 5 dB, see Section 5.3.1
12

. 

7. Apply small scale fading a(t) to all the instantaneous shadowing loss samples 

𝑆𝑗𝑓(
𝑡𝑖−𝑡𝑥,𝑗

𝐷𝑗
) created by step 6. During the shadowing events, shadowing loss in decibels is 

then, 

𝐿𝑆(𝑡𝑖) = 𝑆𝑗𝑓(
𝑡𝑖−𝑡𝑥,𝑗

𝐷𝑗
) − 20𝑙𝑜𝑔10 [𝑎(𝑡𝑖)].     (5.23) 

8. The narrowband total path loss 𝐿𝑇(𝑡𝑖) = 𝑃𝐿(𝑡𝑖) + 𝐿𝑆(𝑡𝑖), where path loss 

𝑃𝐿(𝑡𝑖) is the first two terms in (5.3) and shadowing loss 𝐿𝑆(𝑡𝑖) yields (5.23). 

An example result from this procedure of generating LS(t) for a single shadowing 

event (J=1) is shown in Figure 5.53, where S=15.5 dB is employed for C-band. 

                                                           
12

 The total path loss LS(t) may have discontinuities at the start and stop points of the AFS event, which is 

due to the 5 dB threshold employed here; this may also occur if the CE2R path loss model is used outside 

the AFS region. These discontinuities won’t significantly affect link budget or outage estimation. The 

discontinuities can be mitigated by applying a local moving average if desired. 
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Figure 5.53. C-band instantaneous shadowing loss with fading vs. shadowing duration 

percentage. 

All the above procedures were applied to the AFS event collected in Palmdale, 

CA FT11 C-band Rx1 and L-band Rx1. The measured received power and AFS models 

are shown in Figures 5.54 and 5.55, respectively. Note that both measured and modeled 

received power values are moving averaged over 1000 PDPs. This particular Palmdale 

shadowing event is somewhat asymmetric, so our cubic (or any symmetric) function 

won’t fit perfectly. This is flight maneuver and aircraft shape specific. Some of our 

measured shadowing events are more symmetric, and some show the “opposite” 

asymmetry. However, the asymmetry does not affect statistics and distributions of the 

shadowing loss. The CDFs of measured and modeled airframe shadowing loss are plotted 

in Figures 5.56 and 5.57. 
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Figure 5.54. Measured & modeled airframe shadowing, Palmdale, CA FT11, C-band 

Rx2. 

 

Figure 5.55. Measured & modeled airframe shadowing, Palmdale, CA FT11, L-band 

Rx1. 
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Figure 5.56. CDFs of measured and modeled shadowing loss, Palmdale, CA C-band Rx2. 

 

Figure 5.57. CDFs of measured and modeled shadowing loss, Palmdale, CA L-band Rx1. 
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5.4 SUMMARY 

In this chapter, narrowband AG channel models that include large scale path loss, 

small scale fading and optional airframe shadowing were presented. All these 

characteristics of AG channels can be combined together with the algorithms and models 

provided in this chapter. These narrowband models estimate the total attenuation caused 

by the channel, which is useful to evaluate link budgets and estimate outages (see Figure 

1.1), as well as performance of any air-to-ground radio communication system in terms 

of metrics such as BER, channel capacity, throughput and so on. 

Future work for the narrowband AG channel includes 

1. Modeling terrain shadowing. Unfortunately, no valid data to quantify terrain 

shadowing was collected in our measurement campaign. Comparisons with established 

diffraction models should be done. 

2. Modeling building and/or tree shadowing for small UAS. Small UAS can fly at 

very low altitudes of tens of meters or a few hundred meters above the ground, hence the 

LOS can be obstructed by large buildings or trees, and this could significantly degrade a 

radio link. Small UAS less than 55 pounds in weight and flying below 500 ft are not 

required to use the CNPC link in the United States [115]. Comparison with other 

obstruction/diffraction results should be done. The building/tree shadowing is also of 

interest for other applications in other frequency bands, e.g., Wi-Fi and LTE. 
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CHAPTER 6 

WIDEBAND AG CHANNEL MODELS

Wideband models estimate delay dispersion and multipath in radio propagation 

channels. The term wideband is in contrast to narrowband, where the latter primarily 

quantifies attenuation in the channels. If the bandwidth of the channel in which the gain is 

constant and the phase is linear is smaller than the bandwidth of the transmitted signal, 

frequency selective fading caused by the channels occurs [90]. In this condition, the 

received signals include multiple copies of the attenuated and delayed transmitted 

waveform. This kind of distortion induces inter-symbol interference in single-carrier 

signals, or unequal subcarrier fading on multicarrier signals. 

Multiple delay dispersion measures of a wideband channel can be derived from 

PDPs, including mean excess delay as (3.3), RMS delay spread as (3.2), excess delay 

spread (X dB), delay window and delay interval. Excess delay is the relative delay 

between a MPC and the first arrived path (which is the LOS component if it is present). 

The excess delay, also termed maximum excess delay, is the maximum delay in a PDP at 

which the power of a MPC is less than X dB below that of the strongest MPC [90]. The 

delay window Wq is defined as the duration of the middle portion of a PDP that contains 

q% of the total energy [116]. The delay interval Ip is the delay difference between two 

points that first rising cross the p dB below the power of the strongest MPC and the point 

that falling below the p dB threshold [9]. 
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RMS-DS is the most widely used measure, which can be employed to estimate 

BER [117] and [118] and coherence bandwidth [119] under some assumptions. We report 

RMS-DS and maximum excess delay for the AG channels. The wideband AG channels 

are also quantitatively modeled by tapped delay line structures. Only the C-band 

wideband results are reported since physical MPCs at various delays in C-band are likely 

to also occur at L-band, at the same delays, albeit with different amplitudes and phases. 

Moreover, the 200 ns L-band delay resolution is not small enough to identify all MPCs. 

The L-band TDL models will be created in the near future. 

6.1 DELAY DISPERSION 

In this section example RMS-DS versus link range, example individual PDPs, and 

sequences of PDPs and their statistics in the AG channels for multiple GS local 

environments will be presented. The C-band RMS-DS versus link range for the suburban 

environment at Latrobe, PA is shown in Figure 6.1 [68], where RMS-DS values are 

computed for each individual PDP and then moving averaged over window lengths of 

100 and 1000 RMS-DS values. The RMS-DS was approximately 10 ns, which is the 

minimum achievable value for our C-band sounder (see Section 3.4), but with numerous 

“bumps” up to 85 ns. The sequence of PDPs for the entire FT1 is shown in Figure 6.2, 

which contains 444,074 PDPs. The LOS component is set to a delay of 100 ns in our post 

processing. The maximum excess delay is approximately 4 μs. The number of scatterers 

(MPCs) decreases as the link range increases. The scatterers are only present for a short 

duration. Two examples of RMS-DS bumps near 5800 m and 9100 m are analyzed in 

more detail. 
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Figure 6.1. RMS-DS for entire FT1 at Latrobe, PA C-band Rx1 [68]. 

 

Figure 6.2. Sequence of PDPs for FT1 at Latrobe, PA C-band Rx1 [68]. 
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The instantaneous RMS-DS along with its moving average (window length of 

1000) versus link range for a bump near 5800 m is plotted in Figure 6.3. The RMS-DS 

gradually increases from 10 ns to 50 ns from 5730 m and decreases slowly to 10 ns at 

5880 m, with the maximum value in this bump of approximately 70 ns. The 

corresponding sequence of PDPs is illustrated in Figure 6.4. Some scattered energy is 

present at delays less than 300 ns and a cluster of MPCs is present near 1 μs, as the red 

circle in Figure 6.4 indicates. An example individual PDP at 5771.6 m is shown in Figure 

6.5. There are numerous scatterers at delays less than 200 ns. The distant reflection is 

approximately 25 dB weaker than the LOS component. The relative delay of the distant 

reflection slightly changes over link distance (time) as the aircraft moves. The bump 

duration is nearly 200 m, and this is related to the size of the scattering object. This 

cluster of MPCs is likely reflections from large buildings in the Latrobe township. 

 

Figure 6.3. RMS-DS vs. link distance for bump near 5800 m in FT1 at Latrobe, PA 

C-band Rx1 [68]. 
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Figure 6.4. Sequence of PDPs for RMS-DS bump near 5800 in FT1 at Latrobe, PA 

C-band Rx1 [68]. 

 

Figure 6.5. Example individual PDP from Figures 6.3 and 6.4 at link distance of 5771.6 

m in FT1 at Latrobe, PA C-band Rx1 [68]. 

Another RMS-DS bump near link distance 9100 m is shown in Figures 6.6 and 

6.7 with an example individual PDP at 9098.8 m as plotted in Figure 6.8. This bump 
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duration is nearly 300 m. A cluster of weak MPCs with delay near 4 μs is present; these 

are more than 30 dB below the power of the LOS component, and likely emanate from a 

mountain ridge on the east of the flight route [68]. 

 

Figure 6.6. RMS-DS vs. link distance for bump near 9100 m in FT1 at Latrobe, PA 

C-band Rx1 [68]. 

 

Figure 6.7. Sequence of PDPs for RMS-DS bump near 9100 in FT1 at Latrobe, PA 

C-band Rx1 [68]. 
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Figure 6.8. Example individual PDP from Figures 6.6 and 6.7 at link distance of 9098.8 

m in FT1 at Latrobe, PA C-band Rx1 [68]. 

An example RMS-DS for over freshwater environment on Lake Erie was 

analyzed in [61]. The GS location and flight route in ECEF coordinates of an oval shaped 

FT4 are illustrated in Figure 6.9. The RMS-DS versus time for the entire FT4 is plotted in 

Figure 6.10. Some large RMS-DS values are present in the middle of the FT when the 

aircraft was making a “U-turn”. This region is indicated by the blue dotted line in Figure 

6.9. The sequence of PDPs for this segment is plotted in Figure 6.11. Some MPCs are 

present with delay between 0.5 and 1 μs. Based on the geometry, the potential reflectors 

are multiple large buildings, three harbors with boats, water barriers, oil tanks and light 

houses as indicated in Figure 6.12. 
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Figure 6.9. GS and flight route in ECEF coordinates for over freshwater environment in 

Cleveland, OH [61]. 

 

Figure 6.10. RMS-DS vs. time in FT4 for over freshwater environment in Cleveland, OH 

C-band Rx1 [61]. 

6.7

6.8

6.9

7

x 10
5

-4.74

-4.73

-4.72

-4.71

x 10
6

4.2

4.21

4.22

4.23

x 10
6

 

X

ClevelandOH***10-22-2013***FT2&4

Y
 

Z

Tx (Ground)

Rx (Aircraft)

Rx (Aircraft)

Large RMS-DS

Rx start point

Rx end point



www.manaraa.com

158 
 

 

Figure 6.11. Sequence of PDPs in FT4 for over freshwater environment in Cleveland, 

OH C-band Rx1 [61]. 

 

Figure 6.12. Potential reflectors for MPCs in Figure 6.11 in Google Maps® [61]. 
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Figure 6.13 shows the GS location and flight route in Google Earth® of FT3 

(green straight line) in the mountainous environment of Telluride, CO [69], where the 

blue balloon is the GS location. The RMS-DS versus link range for the entire FT3 is 

plotted in Figure 6.14. The RMS-DS has several bumps near 10 km that reach or exceed 

100 ns. An enlarged version of these bumps is plotted in Figure 6.15 and the 

corresponding sequence of PDPs is shown in Figure 6.16. The diffuse components can be 

divided into two clusters. Cluster #1 is the set of rich scatterers with delays less than 0.5 

μs and cluster #2 is the set of MPCs with delays near 1 μs. Potential reflectors for these 

two clusters of MPCs are hills #1 and #2 indicated in Figure 6.13. 

 

Figure 6.13. GS and flight route in Google Earth® for mountainous environment in 

Telluride, CO [69]. 
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Figure 6.14. RMS-DS vs. link distance for entire FT3 at Telluride, CO C-band Rx1 [69]. 

 

Figure 6.15. RMS-DS vs. link distance for the bumps near 10 km in FT3 at Telluride, CO 

C-band Rx1 [69]. 
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Figure 6.16. Sequence of PDPs for the RMS-DS bump in FT3 at Telluride, CO C-band 

Rx1 [69]. 

RMS-DS results for multiple straight FTs and for two C-band Rxs were combined 

together, for the over-water settings. The aggregate RMS-DS versus link range for over 

sea and freshwater environments are shown in Figures 6.17 and 6.18. The over water 

cases are relatively clean. The over sea RMS-DS bump near 5 km is likely due to 

reflections from some large oil tanks near the coast line on the northeast of the GS. The 

over freshwater bumps are likely reflections from buildings, water barriers and harbors 

on the ground (see Figure 6.12). Statistics of RMS-DS are provided in Table 6.1. Note 

that in Figures 6.17 and 6.18, some zero RMS-DS values appear at large distances, where 

the received power values are relatively low. Due to the filtering effect inside out 

receivers (see Section 3.4), the MPCs (due to the filtering effect) near the strongest one 

were below the noise threshold. They are removed in our post processing hence the 

RMS-DS values are small. 
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Figure 6.17. Aggregate C-band RMS-DS vs. link distance for over sea environment taken 

in Oxnard, CA on June 11
th

 2013. 

 

Figure 6.18. Aggregate C-band RMS-DS vs. link distance for over freshwater 

environment taken in Cleveland, OH on September 22
nd

 2013. 



www.manaraa.com

163 
 

 

Figure 6.19. Aggregate C-band RMS-DS vs. link distance for mountainous environment 

taken in Telluride, CO on September 12
th

 2013. 

The aggregate RMS-DS for mountainous and hilly environments taken in 

Telluride, Latrobe and Palmdale are shown in Figures 6.19 to 6.21, respectively. The 

mountainous RMS-DS results have some large bumps at link distances less than 15 km. 

They are likely reflections from mountainous ridges with bare rocks, as analyzed in 

Figures 6.13 to 6.16. 

For two hilly environments shown in Figures 6.20 and 6.21, the GS locations 

were near townships, and hence reflections were present for nearly the entire range of 

distances. The hills in Latrobe are unlikely to provide strong reflections since they are 

covered by vegetation, but the hills can provide stronger reflections for the Palmdale data 

since the hillsides are uncovered in this area near the Mojave Desert. 
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Figure 6.20. Aggregate C-band RMS-DS vs. link distance for hilly environment taken in 

Latrobe, PA on April 15
th

 2013. 

 

Figure 6.21. Aggregate C-band RMS-DS vs. link distance for hilly environment taken in 

Palmdale, CA on June 12
th

 2013. 
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Table 6.1. Statistics of RMS-DS of selected FTs for over sea, freshwater, mountainous 

and hilly environments. 

Aggregate RMS-

DS for multiple 

environments 

Setting Over Sea 
Over 

Freshwater 
Mountainous Hilly 

Location 
Oxnard, 

CA 

Cleveland, 

OH 
Telluride, CO 

Latrobe, 

PA 

Palmdale, 

CA 

Date 6/11/2013 10/22/2013 9/12/2013 4/15/2013 6/12/2013 

FT Index 1,2,3,8,9,10 2 & 3 2,3,4,8,9 8 & 9 6,7,8,9 

hAC-

hGS(m) 
766-779 559-562 1160-1588 788-790 

1903-

1906 

# of PDPs 12,297,449 4,036,787 10,049,502 1,182,234 1,783,603 

dmin(km) 2.23 1.58 3.34 2.24 5.19 

dmax(km) 48.99 29.35 47.59 13.00 13.00 

Instantaneous 

RMS-DS (ns) 

Mean 9.8 9.9 10.1 17.8 19.3 

Median 9.8 9.9 9.8 11.3 11.7 

Max 364.7 85.4 177.4 371.3 1044.3 

Standard 

deviation 
2.0 1.9 4.4 12.5 51.1 

Moving Averaged 

over 100 PDPs 

Mean 9.8 9.9 10.1 17.8 19.3 

Median 9.7 9.8 9.7 12.1 11.7 

Max 129.3 61.2 130.5 86.2 609.1 

Standard 

deviation 
1.5 1.7 4.2 11.7 40.1 

Moving Averaged 

over 1000 PDPs 

Mean 9.8 9.9 10.1 17.7 19.3 

Median 9.6 9.7 9.5 12.4 11.8 

Max 40.9 49.3 118.6 73.2 202.5 

Standard 

deviation 
1.2 1.5 4.1 11.2 22.3 

 

The aggregate C-band RMS-DS versus link range for desert (Palmdale, CA June 

12
th

 2013), suburban (Latrobe, PA April 15
th

 2013 and Cleveland, OH September 5
th

 

2013) and near-urban (Cleveland, OH October 22
nd

 2013) environments are shown in 

Figures 6.22 to 6.25, respectively. Their statistics are listed in Table 6.2. Since numerous 

buildings were near the GS for this set of Palmdale data, and these could be potential 

reflectors, the RMS-DS for the desert environment has large values that are maintained 

for long durations. This is also true for the suburban environment in Latrobe since the 

aircraft flew over the township. 
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Figure 6.22. Aggregate C-band RMS-DS vs. link distance for desert environment taken in 

Palmdale, CA on June 12
th

 2013. 

 

Figure 6.23. Aggregate C-band RMS-DS vs. link distance for suburban environment 

taken in Latrobe, PA on April 15
th

 2013. 
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The RMS-DS for the suburban environment in Cleveland does not have too many 

bumps since trees and other vegetation are predominant in the area beneath the flight 

route near the GS, and this serves to attenuate reflections. However, some bumps are still 

present due to some large exposed buildings. 

 

Figure 6.24. Aggregate C-band RMS-DS vs. link distance for suburban environment 

taken in Cleveland, OH on September 5
th

 2013. 

As expected, the RMS-DS for the near urban environment has numerous bumps 

since the building density and height are both large in this area. The bumps are present 

for all distances. CDF of RMS-DS for the near urban environment is shown in Figure 

6.26. 
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Figure 6.25. Aggregate C-band RMS-DS vs. link distance for near-urban environment 

taken in Cleveland, OH on October 22
nd

 2013. 

 

Figure 6.26. CDF of aggregate C-band RMS-DS for near-urban environment taken in 

Cleveland, OH on October 22
nd

 2013. 
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Table 6.2. Statistics of RMS-DS of selected FTs for desert, suburban and near-urban 

environments. 

Aggregate RMS-DS for multiple 

environments 

Setting Desert Suburban Suburban Near-Urban 

Location 
Palmdale, 

CA 

Latrobe, 

PA 

Cleveland, 

OH 

Cleveland, 

OH 

Date 6/12/2013 4/15/2013 9/5/2013 10/22/2013 

FT Index 1,2,3 1,2,3,4,5 1,2,3,6 5,6 

hAC-hGS(m) 892-917 598-601 491-518 535-539 

# of PDPs 1,232,379 3,476,494 8,135,292 2,756,131 

dmin(km) 2.58 1.64 1.38 1.69 

dmax(km) 13.00 41.49 46.02 20.31 

Instantaneous RMS-DS (ns) 

Mean 29.5 13.9 9.9 12.8 

Median 11.8 11.0 9.6 10.6 

Max 1009.1 1190.8 2029.5 217.5 

Standard 

deviation 
44.0 13.6 17.4 8.5 

Moving Averaged over 100 PDPs 

Mean 29.5 13.9 9.9 12.8 

Median 12.7 11.4 9.5 10.7 

Max 684.1 157.8 1528.8 149.3 

Standard 

deviation 
38.5 8.3 15.2 7.5 

Moving Averaged over 1000 PDPs 

Mean 29.5 13.8 9.9 12.8 

Median 13.9 11.6 9.4 10.8 

Max 258.1 113.1 568.5 109.6 

Standard 

deviation 
32.6 7.2 8.9 6.9 

 

6.2 TAPPED DELAY LINE MODELS 

Since the MPCs are sparse for the AG channel and scatterers are only present for 

a short duration, we employ a tapped delay line model which is composed of  

1. the LOS component,  

2. the earth surface reflection (for over water and some flat terrains for which the ground 

is flat within Q m from the GS based on the criterion in (5.6)—the earth surface 

reflection is not present for mountainous and near urban environments), and  

3. intermittent MPCs.  

For the over water AG channel, the intermittent MPCs are the 3
rd

 ray only due to the 

sparsity of diffuse components. The intermittent MPCs for other environments may 

extend to 4
th

 or 5
th

 or even larger numbers of rays. These will be addressed in journal 
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papers in the near future. In this section, our TDL models will focus on the intermittent 

3
rd

 ray for the over water environments. The three ray TDL model is illustrated in Figure 

6.27 and the CIR follows [58], 

ℎ(𝜏, 𝑡) = ℎ𝐶𝐸2𝑅,𝐹(𝜏, 𝑡) + 𝑧3(𝑡)𝛼3(𝑡)𝑒−𝑗𝜙3(𝑡)𝛿(𝜏 − 𝜏3(𝑡)),   (6.1) 

where the first term ℎ𝐶𝐸2𝑅,𝐹(𝜏, 𝑡) denotes the CE2R model for frequency F; z3(t){0,1} 

denotes a presence/absence (birth/death or on/off) parameter for the intermittent 3
rd

 ray; 

α3(t) and ϕ3(t) are the amplitude and phase of the 3
rd

 ray, respectively; τ3(t) denotes excess 

delay of the intermittent 3
rd

 ray. 

 

Figure 6.27. Tapped delay line model [58]. 

For the intermittent 3
rd

 ray, statistical models are provided for the probability of 

occurrence, duration D3, excess delay, and relative power with respect to power of the 

LOS component. All these parameters are expressed as functions of link range. The link 

range can be converted to time by flight velocity and direction as desired. Exponential 

fits based on least squares criteria are employed to model these parameters, which yields 

𝑝(𝑅) = 𝑎𝑒𝑏𝑅,         (6.2) 
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where p(R) denotes any one of the three parameters: the 3
rd

 ray occurrence probability 

(dimensionless between 0 and 1), the duration in meters, or the excess delay in 

nanoseconds, as a function of link range R in km; a and b are parameters that control the 

exponential fits. 

The intermittent 3
rd

 ray occurrence probability as a function of link range, along 

with the exponential fits for the over sea and freshwater environments are shown in 

Figures 6.28 and 6.29. The duration vs. link range is shown in Figures 6.30 and 6.31. The 

exponential fits parameters are listed in Table 6.3, where the root mean square deviations 

(RMSE) of the fits are also provided. 

 

Figure 6.28. Intermittent 3
rd

 ray fractional on probability vs. link range for over sea 

environment [58]. 
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Figure 6.29. Intermittent 3
rd

 ray fractional on probability vs. link range for over 

freshwater environment [58]. 

 

Figure 6.30. Intermittent 3
rd

 ray duration vs. link range for over sea environment [58]. 
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Figure 6.31. Intermittent 3
rd

 ray duration vs. link range for over freshwater environment 

[58]. 

The relative power of the intermittent 3
rd

 ray is well modeled by a Gaussian 

distribution with mean μ3 dB smaller than the power of the LOS component and standard 

deviation σ3 dB. The over freshwater environment yields μ3=23.3, σ3=3.9, and the over 

sea environment yields μ3=22.6, σ3=5.2. The phase of the intermittent 3
rd

 ray ϕ3 is 

uniformly distributed between 0 and 2π. 

The excess delay of the intermittent 3
rd

 ray versus link range is shown in Figures 

6.32 and 6.33. The excess delays for the over sea environment are classified into two sets: 

(1) 6s  3 7s (not shown in Figure 6.32) with probability of 0.0077; and (2) 0.1s 

 3 1.1s with probability of 0.9923. The excess delay for the over freshwater 

environment ranges between 0.1 and 0.9 s. The excess delay can be well fitted by any 

standard distribution, yet for convenience exponential fits for the over freshwater case 

and the (2) subset for the over sea case are listed in Table 6.3. Delays in the subset (1) for 

the over sea case are modeled by a uniform distribution. 
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Figure 6.32. Intermittent 3
rd

 ray excess delay vs. link range for over sea environment 

[58]. 

 

Figure 6.33. Intermittent 3
rd

 ray excess delay vs. link range for over freshwater 

environment [58]. 
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Table 6.3. Exponential fit parameters for intermittent 3
rd

 ray fractional on probability, 

duration and excess delay vs. link range [58]. 

 
a b RMSE 

Over Sea 

Oxnard, CA 

On Probability 0.1672 -0.2474 0.0125 

Duration 

Max 12.49 -0.0847 3.254 

Mean 1.141 -0.053 0.3456 

Median 0.4294 -0.0417 0.1854 

Excess Delay 

Max 940.4 -0.0759 284.1 

Mean 237.3 -0.0315 91.39 

Median 231.4 -0.0314 144.2 

Over Fresh Water 

Cleveland, OH 

On Probability 0.0345 -0.1515 0.009 

Duration 

Max 15.42 -0.1568 5.063 

Mean 1.122 -0.0967 0.3106 

Median 0.5382 -0.0773 0.1635 

Excess Delay 

Max 228 0.0037 191.5 

Mean 108.2 0.0144 50.54 

Median 98.53 0.011 29.25 

 

To implement the TDL model as a function of link range, the following algorithm 

is provided [58]: 

1. For a given value of link range R, implement the CE2R provided in the Section 4.2. 

2. From a distribution specified by Figures 6.28 and 6.29 and Table 6.3, generate 

random variable z3. If z3=0, 3
rd

 ray not present, so go to step 1 and increment/change link 

range R; if z3=1, go to step 3.  

3. From a distribution specified by Figures 6.30 and 6.31 and Table 6.3, generate the 

3
rd

 ray’s duration D3. (If needed, convert duration in meters to time or symbol units.) 

4. Draw Gaussian random variable with mean 3, standard deviation 3, to set 3
rd

 ray 

relative amplitude. Select the 3
rd

 ray phase from a uniform distribution on [0, 2). 

5. From distribution specified by Figures 6.32 and 6.33 and Table 6.3, set the 3
rd

 ray 

relative delay 3. 

6. Increment/change range R as desired, update the two-ray model values, and 
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maintain 3
rd

 ray for duration D3. After D3 reached, go to step 1 and continue. 
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CHAPTER 7 

ANTENNA AND FREQUENCY DIVERSITY

Inter-frequency correlation is a measure of mutual influence between signals at 

different frequencies. Both L-band and C-band will be employed for CNPC links, 

possibly simultaneously, hence the influence of the channels at the two frequencies is of 

interest. The desired magnitude of the correlation coefficient is as small (close to zero, 

uncorrelated) as possible. 

Intra-frequency correlation, also known as spatial correlation, quantifies similarity 

of channels seen by multiple aircraft antennas. Uncorrelated intra-band signals indicate 

that the channel capacity and/or link reliability can be increased by employing MIMO 

antennas. For reliability improvements, channel diversity gain can be achieved by MIMO 

systems if the channels are uncorrelated. However, an LOS component is almost always 

present in the AG channel, which is strongly similar between different aircraft antennas, 

hence the signals at different aircraft antennas are generally highly correlated. In this 

chapter we quantify the correlation coefficient of LOS components. 

The correlation computation algorithm is illustrated in Figure 7.1. As noted in 

Chapter 3.3.3, yellow blocks denote inputs and green blocks denote outputs, CiLj denotes 

the correlation between C-band i
th

 Rx and L-band j
th

 Rx i,j{1,2}, C1C2 and L1L2 

denote spatial correlation in C-band and L-band respectively, and MeasRslt is a matrix  
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Figure 7.1. Inter-receiver correlation coefficient computation algorithm. 
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that contains received power. Since the receivers in the different bands have different 

PDP update rates, we have to synchronize the PDPs used in correlation coefficient 

calculation (not all PDPs are used) before computing the correlation. One receiver’s 

power value (from a PDP) is selected for each Rx for each time bin TBin of 2 ms. These 

power values are converted to amplitude. The correlation coefficient ρ is given by 

𝜌𝐴1,𝐴2
=

𝐸[(𝐴1−𝜇𝐴1)(𝐴2−𝜇𝐴2)]

𝜎𝐴1𝜎𝐴2

 ,       (7.1) 

where E denotes expectation, Ai’s denote received amplitude (in linear scale) vectors with 

length corresponding to the stationarity distance of 15 m, and the μ’s and σ’s are means 

and standard deviations of the Ai’s. The correlation coefficient ranges between -1 

(negatively correlated, channel amplitude from one receiver decreases as the amplitude 

from the other receiver increases) and 1 (highly correlated, channel amplitudes from one 

receiver increase as the amplitude from the other receiver increases). A coefficient close 

to zero indicates the channels for the two receivers are uncorrelated. 

7.1 ANALYTICAL SPATIAL CORRELATION 

Base on the CE2R model described in Chapter 4.2, signal amplitude is computed 

numerically with the two aircraft antennas separated by our actual value of 1.24 m. The 

analysis here is applied to the over freshwater setting. The parameters we use are as 

follows: aircraft altitude 566.3 m above the GS antenna, average wind speed for Lake 

Erie on 10 October 2013 of 5 m/s (for water surface roughness which affects the 

reflection coefficient, as discussed in Chapter 4.3.3) [120], conductivity σ=0.01 S/m, and 

relative permittivity ε=81 for freshwater [9]. 

The analytical correlation coefficient versus horizontal distance along the earth 

surface is shown in Figure 7.2, where the horizontal distance dk1 of C-band Rx1 ranges 
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from 388 m to 30 km. (As described in Chapter 4.2, since some approximations are 

employed, the CE2R for the over freshwater case is only valid when horizontal distance 

is greater than 388 m.) As the aircraft is flying away from the GS, the horizontal distance 

of C-band Rx2 is dk2+Δd, where the intra-band antenna’s spatial separation distance Δd is 

1.24 m. The path loss for both receivers can be estimated by the CE2R model, which can 

be converted to received power, from which the received signal amplitude vector used in 

Eq. (7.1) is derived. Figure 7.2 contains correlations computed with three different vector 

(Ai) length values of 5 m (smaller than the SD), 15 m (SD) and 150 m (larger than the 

SD). The correlation coefficient oscillates from -1 to +1, especially at short distances. 

Smaller SD values have larger oscillation at larger distances. These oscillations are due to 

two-ray effects. Figure 7.3 is an enlarged version Figure 7.2 with horizontal distance 

limited to the short range from 388 m to 5 km. The L-band correlation coefficients versus 

distance are shown in Figure 7.4; and these contain fewer oscillations than the C-band 

results, but the oscillation magnitude is the same as in the C-band results. 

 

Figure 7.2. Analytical correlation coefficient between two C-band receivers vs. horizontal 

distance (from 1 m to 30 km) for over freshwater case, based on CE2R without fading. 
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Figure 7.3. Analytical correlation coefficient between two C-band receivers vs. horizontal 

distance (from 1 m to 5 km) for over freshwater case, based on CE2R without fading. 

 

Figure 7.4. Analytical correlation coefficient between two L-band receivers vs. horizontal 

distance (from 1 m to 30 km) for over freshwater case, based on CE2R without fading. 

In Figures 7.5 and 7.6, we incorporate Ricean fading into the signal amplitude 

computed by the CE2R model. The Ricean K factor employed is 29.9 dB in C-band and 

12.8 dB in L-band [58]. The magnitude and duration of the correlation coefficient 

oscillations become much larger, and as we will show, inclusion of this small-scale 

fading improves agreement with measured correlations. 
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Figure 7.5. Analytical correlation coefficient between two C-band receivers vs. horizontal 

distance (from 1 m to 30 km) for over freshwater case, based on CE2R plus Ricean 

fading. 

 

Figure 7.6. Analytical correlation coefficient between two L-band receivers vs. horizontal 

distance (from 1 m to 30 km) for over freshwater case, based on CE2R plus Ricean 

fading. 

7.2 EMPIRICAL SPATIAL CORRELATION 

The example spatial correlation coefficient versus link distance for over 

freshwater flight track 2 is shown in Figure 7.7 (C-band) and 7.8 (L-band). The empirical 

results agree with the analytical spatial correlation results shown in Figures 7.5 and 7.6 in 

terms of the range of values and the oscillatory behavior. The probability density function 

of spatial correlation for this FT is shown in Figures 7.9 (C-band) and 7.10 (L-band). The 
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coefficients range from -1 to +1, but most of the values are near +1. The Generalized 

Pareto distribution fits the PDF well, and this distribution is given by 

𝑝𝜌(𝑥) =
1

𝜎
(1 + 𝑘

𝑥−𝜃

𝜎
)−1−

1

𝑘,       (7.2) 

where θ denotes a threshold parameter that is set to the minimum value -1, σ denotes a 

scale parameter and k is a shape parameter. 

Additional empirical spatial correlation coefficients versus link distance for 

suburban, hilly and mountainous terrains in both C- and L-bands are shown in Figures 11 

to 16. The coefficient in Figure 7.13 is relatively small before 10 km. This is due to fact 

that the aircraft altitude was high for the mountainous terrain FT (approximately 1900 m 

above the GS antenna), hence the elevation angle at distances less than 10 km was large. 

The range of distances less than 10 km in Figure 13 is comparable with the range less 

than 3.5 km in Figure 7.2. 

 

Figure 7.7. C-band spatial correlation vs. link distance for over freshwater FT2. 
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Figure 7.8. L-band spatial correlation vs. link distance for over freshwater FT2. 

 

Figure 7.9. PDF of C-band spatial correlation for over freshwater FT2. 
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Figure 7.10. PDF of L-band spatial correlation for over freshwater FT2. 

 

Figure 7.11. C-band spatial correlation vs. link distance for Latrobe suburban FT3. 
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Figure 7.12. L-band spatial correlation vs. link distance for Latrobe suburban FT3. 

 

Figure 7.13. C-band spatial correlation vs. link distance for Palmdale hilly FT9. 



www.manaraa.com

187 
 

 

Figure 7.14. L-band spatial correlation vs. link distance for Palmdale hilly FT9. 

 

Figure 7.15. C-band spatial correlation vs. link distance for Telluride mountainous FT9. 
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Figure 7.16. L-band spatial correlation vs. link distance for Telluride mountainous FT9. 

The statistics of over freshwater spatial correlation are provided in Table 7.1. The 

median value is approximately 0.9 for both bands, which is much larger than the typically 

used correlation thresholds of 0.7 or 0.5 [121] and [122], below which the channels are 

considered approximately uncorrelated. The spatial correlation results in other scenarios 

have similar values and distributions. Median correlation values for all scenarios are 

listed in Table 7.2. The L-band correlation coefficient is slightly larger than that for C-

band. This can be explained by the analytical spatial correlation shown in Figures 7.2 and 

7.4. The L-band spatial correlations have fewer oscillations (which yield the smallest 

correlation values) than C-band, hence the statistics of the L-band results are slightly 

larger than those of the C-band results. The intra-band signals are highly correlated, 

which is because the LOS component is always present and dominant in our AG channel, 

except where airframe shadowing events occurred (these are reported in Chapter 5.3 and 

[113]). 
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Table 7.1. Statistics of spatial correlation for over freshwater FT2. 

Cleveland, OH 22Oct2013, FT2 

 
C1C2 L1L2 

Mean 0.50 0.66 

Median 0.88 0.93 

Max 1.00 1.00 

Min -1.00 -0.99 

Generalized 

Pareto 

σ 4.51 4.68 

k -2.26 -2.34 

 

Table 7.2. Median values of spatial correlation for multiple scenarios. 

Median Spatial Correlation C-band L-band 

Over freshwater, Cleveland FT2 0.88 0.93 

Over sea, Oxnard FT2 0.97 0.97 

Urban, Cleveland FT5 0.93 0.94 

Suburban, Cleveland FT2 0.85 0.99 

Suburban, Latrobe FT2 0.87 0.97 

Suburban, Palmdale FT2 0.91 0.98 

Hilly, Latrobe FT9 0.86 0.91 

Hilly, Palmdale FT7 0.90 0.99 

Mountainous, Telluride FT9 0.85 0.99 

 

The spatial correlation in an airframe shadowing event is of interest. The statistics 

of intra-band correlation coefficients in an example AFS event collected over Lake Erie 

FT4 is provided in Table 7.3 [113]. The spatial correlation median values decreased from 

0.85 or above outside the AFS to approximately 0.6 in the AFS, which is below the 

typically used threshold of 0.7 for spatial correlation [121]. 

Table 7.3. Statistics of spatial correlation in an airframe shadowing event [113]. 

  
Whole FT Shadowing Area 

C-band L-band C-band L-band 

Mean 0.42 0.59 0.23 0.26 

Median 0.85 0.91 0.56 0.64 

Max 1.00 1.00 1.00 1.00 

Standard deviation 0.72 0.59 0.77 0.76 



www.manaraa.com

190 
 

7.3 INTER-FREQUENCY CORRELATION 

The probability density function of inter-frequency correlation coefficient 

between C-band Rx1 and L-band Rx1 for over freshwater FT4 is shown in Figure 7.17 

[61]. It follows a Gaussian distribution with mean value close to zero. This conclusion 

pertains for all scenarios: this means that the L-band and C-band channels are essentially 

uncorrelated. Although the physics for both band channels are mostly the same, the 

reflection coefficients are not, and scattering (small-scale) effects are also different, and 

this explains the uncorrelatedness of the small scale amplitude fading in the two bands. 

 

Figure 7.17. PDF of inter-frequency correlation between C-band Rx1 and L-band Rx1 for 

over freshwater FT4 [61]. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have investigated the topic of dual-band non-stationary 

channel modeling for the air-ground channel, for two specific frequency bands planned 

for UAS use. Our investigation employed analysis and empirical results from a large 

body of data collected from NASA flight tests. In this chapter, the main conclusions and 

discussion of avenues for future research for academia and industry are presented. 

8.1 DISSERTATION CONCLUSIONS 

The main objective of our research is to estimate non-stationary air-ground 

channel characteristics, and from these characteristics develop channel models in both L-

band (near 968 MHz) and C-band (near 5060 MHz). A survey of the literature about the 

AG channel and remaining gaps were provided. Deterministic geometry based stochastic 

models for the overwater AG channels were provided. Based on experimental data, 

stationarity distances, over which the channels are considered wide sense stationary, were 

estimated. We also presented path loss, small scale fading, airframe shadowing, and TDL 

models for multiple ground station local environments. Multiple aircraft antenna diversity 

and inter bands correlation were investigated as well, for the specific aircraft and antenna 

locations used in our flight tests. 

We worked on a NASA project entitled “Unmanned Aircraft System Integration 

in the National Airspace System.” Specifications of the control and non-payload 

communication (CNPC) link are being designed for UAS in the United States. The AG 
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channel models we derived in this project provide references for government, industry, 

academia, and standard bodies who work on the CNPC physical layer design and 

performance evaluation. Our AG channel models will also be inputs for the ICAO and 

likely for some ITU contributions. They may also be used for evaluation of proposed 

aeronautical waveform designs, e.g., the European aeronautical wireless communication 

system designated LDASC1 and LDASC2. 

We developed deterministic geometry based stochastic channel models for 

overwater environments, and they are also applicable to some terrain channels. Since the 

LOS is present for almost all the time and the earth surface reflection is present for most 

GS local terrains, the over water AG channels are modeled by CE2R or FE2R. We made 

several improvements to the CE2R, including accounting for the earth spherical 

divergence, atmospheric refraction and earth surface roughness. The limitations and 

applicable conditions for use of the models were indicated as well. The theoretical intra-

band spatial correlation between signals received on two spatially separated aircraft 

antennas, mounted on the bottom of the aircraft, was also derived from the CE2R. The 

CE2R and the theoretical intra-band correlation were validated by the measured path loss 

quite well. Some other effects that may be present in the AG channels were also 

described, although they were not encountered or were negligible in our measurements; 

this includes atmospheric gas, hydrometeor attenuation and ducting. 

As far as we are aware, NASA Glenn Research Center has conducted the most 

comprehensive AG channel measurement campaign in history, and this covers all the 

typical GS local environments, including over sea, over freshwater, suburban, near urban, 

desert, hilly and mountainous terrains. The measurement system includes an S-3B Viking 
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aircraft, a transportable GS antenna tower and a dual-band direct sequence spread 

spectrum channel sounder that contains one transmitter and two receivers in both the C- 

and L-bands. Approximately 316 million PDPs have been collected over 82 flight tracks. 

The stationarity distance is a small range over which channels are wide sense 

stationary, and knowing this distance is essential for non-stationary channel modeling. 

One of our main contributions is the estimation of stationarity distance for the AG 

channels, which has not been investigated before. We employed two measurement based 

methods: the temporal PDP correlation coefficient and the spatial collinearity (or 

equivalently, the correlation matrix distance). The results of two methods basically agree 

with each other. The C-band SD is approximately 15 m (250 wavelengths), which is 

larger than that in the cellular or vehicle-to-vehicle (V2V) channels since the AG LOS 

component is generally stronger and more frequently present than in these terrestrial 

channels. The AG channel MPCs are also more sparse. The L-band SD is expected to be 

larger than that in C-band because of the larger wavelength, but to be conservative, we 

employed 15 m as the SD for L-band as well. The SD is used for evaluation of the 

empirical small scale fading and inter- and intra-band correlations. 

The path loss is described by either log-distance or CE2R models along with 

some corrections such as the adjustments for flight direction. The standard deviations 

smaller than 4.2 for both bands and for all environments indicates that the log-distance 

path loss model fit the measured data very well; we note again that for terrestrial path loss 

models, standard deviations are often 6-12 dB [90]. Since the LOS component is almost 

always present in the AG channels, the small scale fading is modeled by a Ricean process 

of unit energy, and is then fully characterized by the Ricean K-factors. The K-factors 
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estimated by the maximum likelihood method and a moment-based method are 

essentially the same, and these are approximately 28.7 dB in C-band and 13.1 dB in L-

band. 

The airframe shadowing is a characteristic that is somewhat unique to the 

aeronautical channels. It occurs during some specific aircraft maneuvers. Statistics and 

models of the airframe shadowing duration and loss were computed over 58 S-3B Viking 

aircraft (wing) shadowing events. The shadowing duration is on average 35 seconds in C-

band and 25 seconds in L-band. These durations are longer than expected for practical 

flights since out flights were purposely designed to fly slowly so that we can capture 

Doppler. The median shadowing loss is on average 16 dB in C-band and 11 dB in L-

band. The maximum loss in L-band is on average 36 dB with the maximum single L-

band shadow depth recorded at 47.8 dB. The shadowing loss was found to be 

independent of the shadow duration, but loss is a function of the aircraft roll angle of the 

shadowing event. An algorithm to simulate the airframe shadowing loss over time or 

distance was provided, hence providing models for the narrowband total path loss 

accounting for distance-dependent path loss, fading, and shadowing. 

For the wideband AG channels, C-band RMS-DS, sequences of PDPs and TDL 

models were presented in this dissertation. In most environments, the RMS-DS was 10 ns 

for most of time, with numerous bumps with RMS-DS up to 2 microseconds. The CE2R 

plus intermittent 3
rd

 or 4
th

 or 5
th

 MPCs represent the wideband AG channel very well. The 

occurrence probability, duration, relative power, phase, and excess delays of the 

intermittent MPCs for the over water cases were modeled. The algorithm to simulate the 
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over water TDL model is provided, and models for the other environments will soon be 

completed. 

Based on the correlation between received signal amplitude vectors from two 

aircraft receivers, the C-band and L-band channels were found to be uncorrelated. The 

intra-band channels for two Rx antennas with approximately 1.82 m separation distance, 

mounted on the bottom of the aircraft, were found to be highly correlated except where 

the airframe shadowing occurred. Therefore, multiple aircraft antennas at larger spatial 

separations are recommended for the future CNPC link to provide diversity and mitigate 

the airframe shadowing loss. 

8.2  FUTURE WORK 

Possible extensions of this dissertation work are listed below: 

 Models of the occurrence probability, duration, relative power, phase and 

excess delays, and Doppler characteristics of the intermittent MPCs, for TDL 

models applicable for hilly, mountainous, desert, suburban and near urban 

environments will be generated in the near future and reported in our series of 

AG channel journal papers. 

 L-band wideband models are of interest. These were not developed since our 

sounder had limited delay resolution (200 ns). Nonetheless, from a physical 

perspective, MPCs at various delays in C-band are likely to also be present at 

L-band, albeit with different amplitude characteristics. Thus a basis for 

wideband L-band models can be constructed from the C-band data, 

identifying MPC delays and durations. Rough estimates of amplitude 

characteristics can be obtained via frequency-scaled reflection coefficients, 



www.manaraa.com

196 
 

but translation of scattering and/or diffraction effects is more complex. Hence 

wideband L-band measurements should be undertaken to identify MPC 

characteristics in the most dispersive settings. 

 The heights of the GS antennas were a constant value of 20 m in our 

measurement campaign. The CE2R model and characteristics of the diffuse 

MPCs are expected to change with GS height. The magnitude of the two-ray 

peaks and nulls are expected to decrease as the GS antenna height decreases, 

and this can be estimated by theoretical CE2R models. The changes of MPCs 

characteristics are of most significance for multiple GS heights, especially for 

urban environments where numerous MPCs are likely present. Multiple other 

values of the GS antenna heights are thus of interest, such as 1.5 m for a 

human operating an UAS, 2.5 m for the GS antenna mounted on the roof of a 

vehicle, and 50 m or larger for the GS antenna mount on an air traffic control 

tower. 

 The aircraft height was between 500 and 2000 m above the earth in our 

measurement campaign. It would be worthwhile to increase the height to up to 

10 km to compare measurements with results from the CE2R model and 

quantify how (if) the characteristics of the diffuse MPCs change. 

 The multiple GS antennas or multiple GSs that are multiple tens of meters, or 

even kilometers apart, are expected to provide diversity. Therefore, 

quantitative study of the GS spatial diversity would be useful. 

 In our work, the two intra-band aircraft antennas were mounted at fixed 

locations, relatively close to each other. It would be interesting to compare the 
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results of spatial correlation and instantaneous diversity gain if the separation 

distance between antennas and locations of antennas are changed or if more 

antennas are employed. Determination of how many antennas and where to 

locate them to mitigate (1) airframe shadowing, and (2) small scale fading 

(including 2-ray nulls) is of interest. 

 The GS was motionless in our measurement campaign. However, it could be 

moving in practice if the GS antennas were mounted on vehicles or boats, 

which induces additional time variant factors to the AG channels. Such 

“doubly-mobile” AG channels should be measured and modeled. 

 The aircraft itself is often a large ground plane for the aircraft antennas, and 

this affects the patterns. However, it’s unrealistic to experimentally investigate 

this effect, especially for a wide variety of aircraft types and sizes. This effect 

can be studied by ray-tracing and/or full-wave electromagnetics modeling. 

Moreover, the spatial correlation, instantaneous diversity gain, and airframe 

shadowing for different numbers of aircraft antennas and different separation 

distances can be estimated by ray-tracing and compared with any 

measurements as well. 

 Small UAS can fly at very low altitudes on the order of tens of meters, and 

hence buildings or trees could obstruct the LOS. Investigation of building 

and/or tree shadowing for small UAS is another topic worthy of investigation. 
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